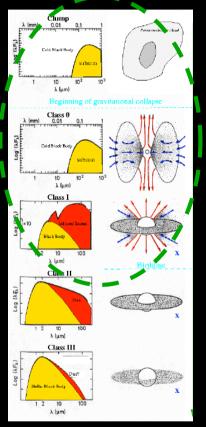
The earliest phases of high-mass star formation

Sylvain Bontemps (OASU/LAB - Univ. Bordeaux)


Open Questions

- Origin of the stellar masses?
- What regulates SF?
- Is there bimodal SF?
- How do massive stars form?
- Relationship with cluster formation?

Observation of protostellar objects - earliest phases of SF

- Far-IR / Sub-millimeter radio Astronomy
- Large-scale MM surveys, HERSCHEL, MM interferometry

The general context

Lada et al. (1987), Shu et al. (1987), André et al. (1993) Pre-stellar cores + Collapsing protostars

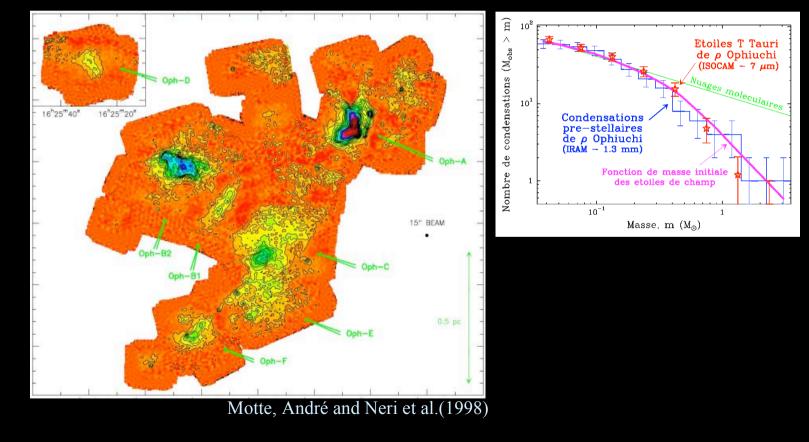
Star formation, IMF, high-mass stars

- One of the most important open issues in Astrophysics:
- Stars are fundamental in Galaxy evolution.
- The mass (and metallicity) of a star determines its whole life.
- But we do not understand what determines the stellar masses.
- High-mass stars: dominate Gal. + least understood formation

Theoretically:

- Jeans Masses (the pure Gravitational view)
- Shu's scheme (ambipolar diffusion 10^{-5} M_{sol}/yr collapse)
- Magnetic field dominated (Mouschovias, Ciolek, Basu ...)
- Tan & McKee (2003): turbulent support \rightarrow up to 10⁻³ M_{sol}/yr
- Krumholz et al. (2007): influence of radiation.
- Turbulent fragmentation (e.g. Ballesteros-Paredes et al. 2003).
- Competitive accretion (Bate et al. 2003; Bonnel et al. 2003).

Regulation of SF (origin of the low efficiency of SF, timescale) Fragmentation (origin of the IMF)


Low-mass SF: Origin of the IMF

Observations of low-mass stars:

• The local IMF is fairly known and seems to be uniform

• It seems that the IMF is determined before the gravitational

collapse (Motte et al. 1998; ... ; Nutter & Ward-Thompson 2007):

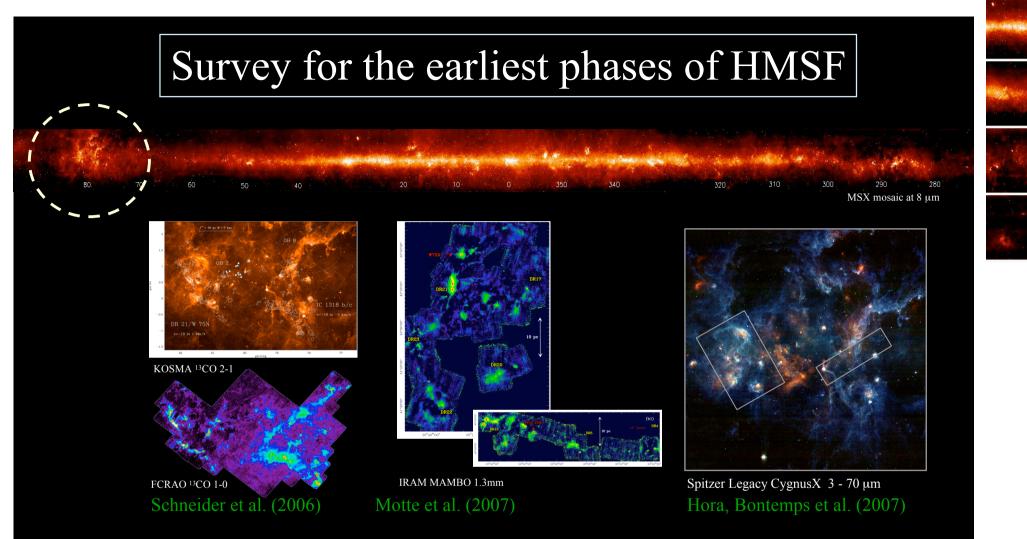
Origin of massive stars?

- Jeans or Bonnor-Ebert masses (pure gravitation?).
- Gravo-turbulent fragmentation + shocks (Klessen et al. 00; Vazquez-Semandari et al. 00; Padoan & Nordlund 02; others ...).

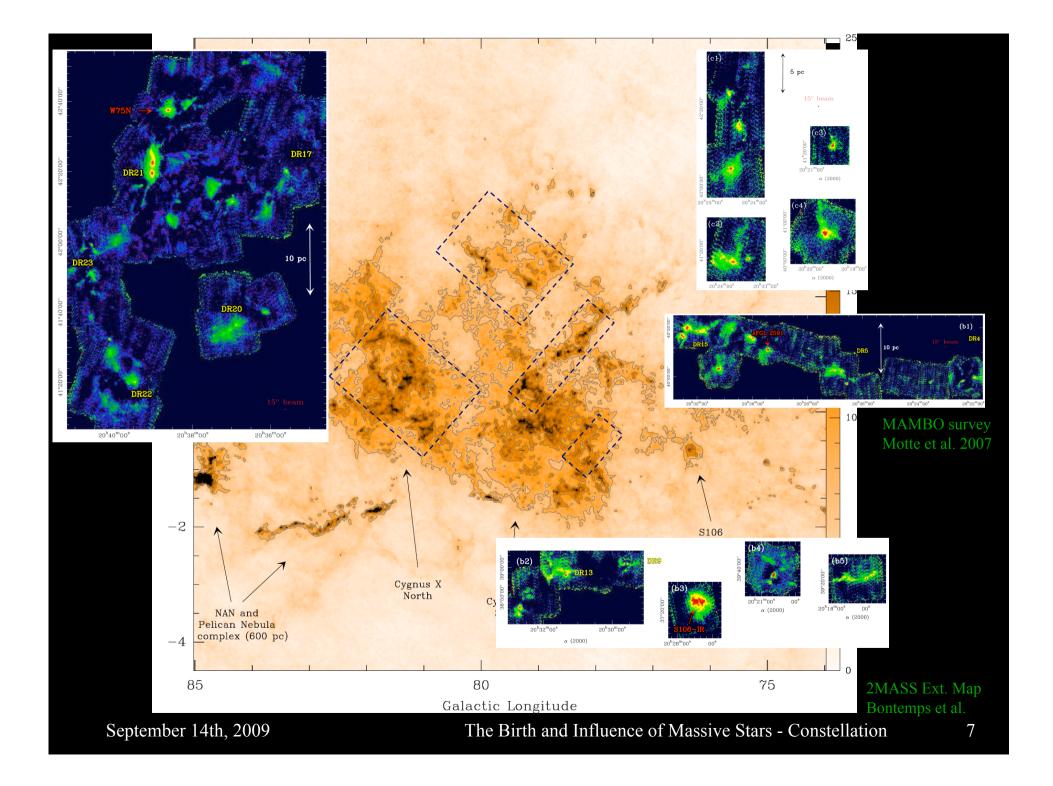
Extreme, discriminating case or specific process?

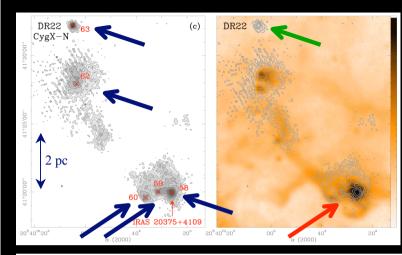
- How to collapse 20 à 200 M_{Jeans}?
- Radiation pressure above 10 M_{\odot} can stop accretion/infall.
- Cluster formation and collective effects/feedbacks.
- *Gravo-turbulent fragmentation*: The few lucky ones?
- *The McKee's view*: slow evolution of turbulent massive dense cores toward collapse.
- The Bonnell's view: fast gravo-turbulent fragmentation (~ $\tau_{\rm ff}$) + competitive accretion at the center of proto-clusters.

Survey for the earliest phases of HMSF

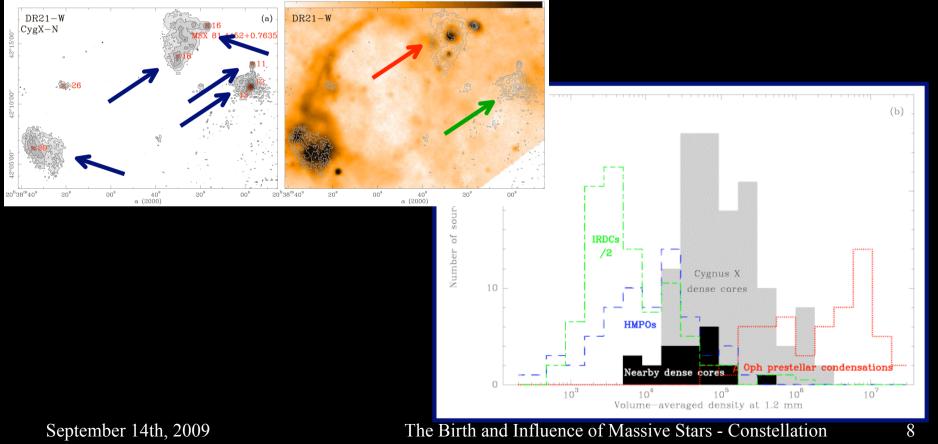

1989-2009: 20 years from IRAS to Herschel

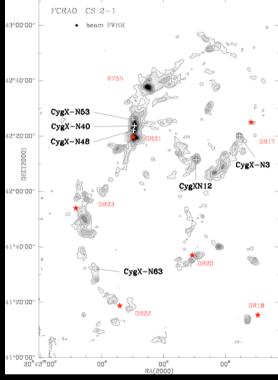
From UCHII regions (back) to the cold phases:


- IRAS: the ~ 2000 red, bright IRAS sources Wood & Churchwell (1989)
- Masers: samples of high-mass SFRs Molinari et al. (1996), Plume et al. (1997), all refs in Kurtz et al. (2000)
- pre-UCHII regions: IRAS sources, no cm Sridharan, Beuther et al. (2002)
- MM continuum: IRAS samples Muller et al. (2002), Faundez et al. (2004), ...
- IRDCs: cold but not complete Simon, Rathborne et al. (2006); Pillai et al. (2006)
- MM complete imaging: W43, Cygnus X Motte et al. (2003, 2007)
- Galaxy-scale MM surveys: ATLASGAL Schuller et al. (2009) + Herschel FIR surveys soon...

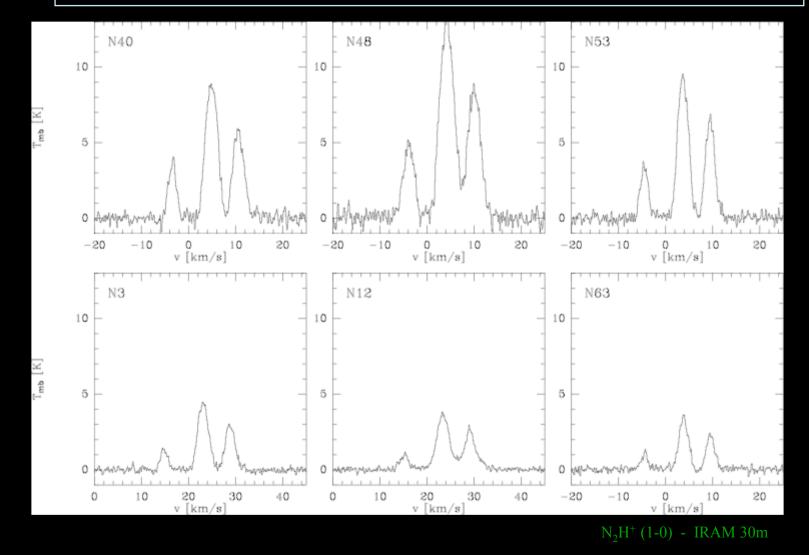

Contraction of the second second second

MSX mosaic at 8 µm

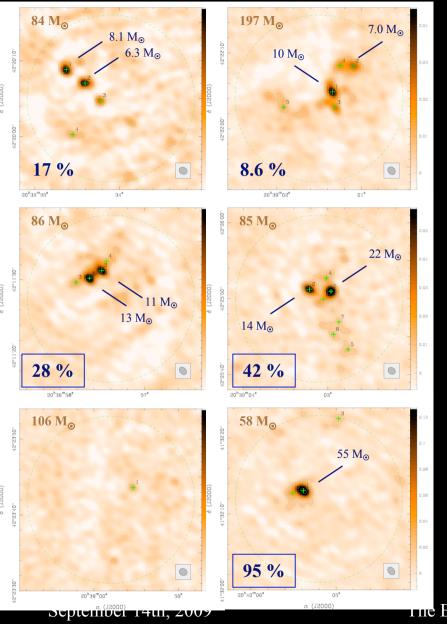



Example of Cygnus X: rich complex at 1.7 kpc.Complete survey (Motte et al. 2007).High-resolution with the PdBI (Bontemps et al. 2009).

- A sample of 128 massive dense cores (MDCs)
- 33 are more massive than 40 M_{\odot} .
- Same nature than the low-mass dense cores?
- Bright and weak in the IR (IR-quiet).
- All IR-quiet are bright in SiO.
- Short formation timescale (less than 10⁴ yr).

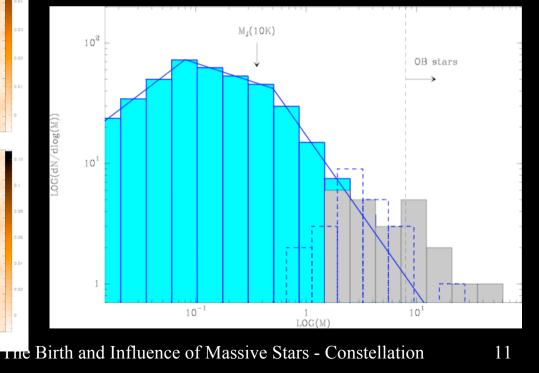


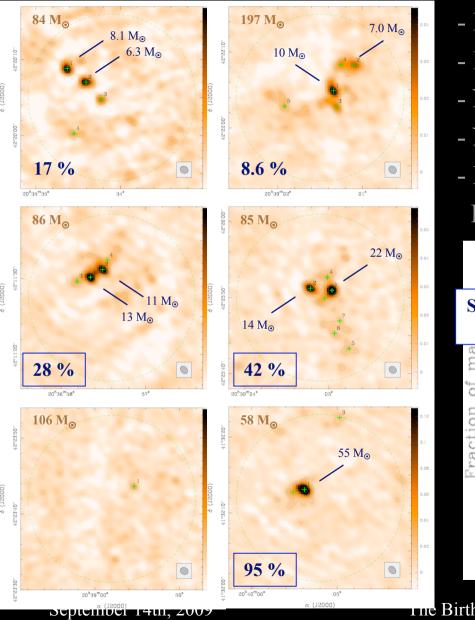
Bontemps et al., 2009, arXiv:0909.2315v1 CS data from FCRAO, Schneider et al.


Table 3.1: Global properties of five IR-quiet MDCs compared to the McKee & Tan [2003] prescriptions (last line).

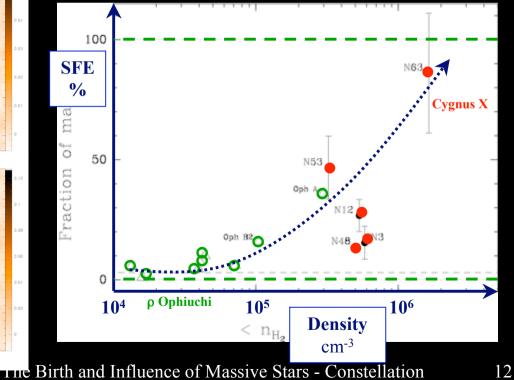
Name	Mass	Size	$< n_{\rm H_2} >$	$\sigma_{ m turb}$	$M_{\rm vir}$	$M_{\rm Jeans}$	$\Sigma_{\rm cl}$	$ au_{ m ff}$
	$[M_{\odot}]$	[AU]	$[cm^{-3}]$	$[km.s^{-1}]$	$[M_{\odot}]$	$[M_{\odot}]$	$[g.cm^{-2}]$	[yr]
CygX-N3	84.0	20300	$5.29 imes 10^5$	0.98	91.0	1.1	1.45	$6.0 imes 10^4$
CygX-N12	86.0	20400	$5.33 imes10^5$	0.89	75.5	1.1	1.47	$5.9 imes10^4$
CygX-N48	197.0	27300	$5.10 imes10^5$	1.28	209	1.1	1.88	$6.1 imes10^4$
CygX-N53	85.0	24000	$3.24 imes10^5$	0.76	64.8	1.4	1.05	$7.6 imes10^4$
CygX-N63	58.0	12300	$1.64 imes10^6$	0.72	29.8	0.62	2.73	$3.4 imes10^4$
McKee&Tan03	60.0	11700	$5.60 imes 10^5$	1.27	54.7	1.1	1.00	$5.8 imes10^4$

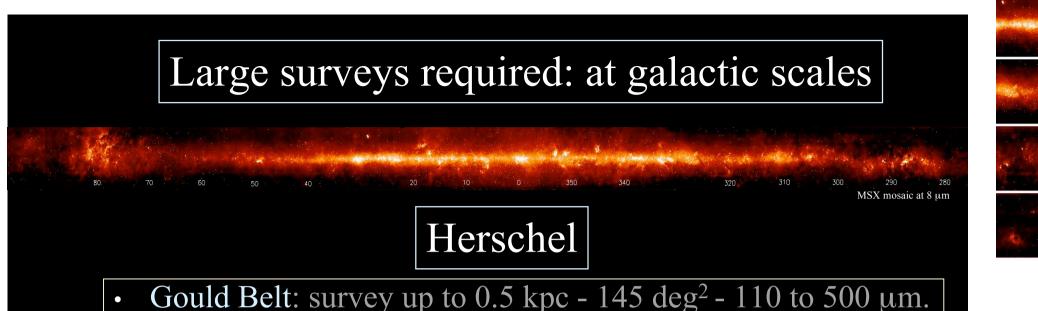
- These MDCs are McKee&Tan's "prototypes"
- Fragmentation according to Dobbs et al. (2005).
- Ten times more massive than in nearby regions.
- Should form OB stars ... but how?
- High resolution PdBI down to ~1 arcsec (1700 AU): Bontemps et al. (2009), astroph:0909.2315v1




September 14th, 2009

- IMF/SFE 30%: M_{max} = 3.3 M_{\odot} (80 stars).
- In 3 cores: more than $\sim 30\%$ in 2 protostars.
- Not a normal gravo-turbulent fragmentation.
- Not monolithic collapse either.
- Primordial mass segregation.

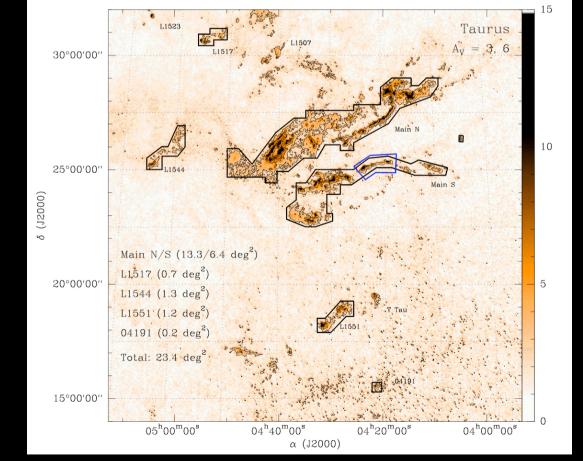

Bontemps et al. (2009), astroph:0909.2315


- IMF/SFE 30%: M_{max} = 3.3 M_{\odot} (80 stars).
- In 3 cores: more than $\sim 30\%$ in 2 protostars.
- Not a normal gravo-turbulent fragmentation.
- Not monolithic collapse either.
- Primordial mass segregation.

Bontemps et al. (2009), astroph:0909.2315

Intermediate Conclusions

- Earliest phases for high-mass SF are observable.
- Individual massive protostars at scales of ~ 2000 AU.
- Seems to show extreme fragmentation properties in dense cores.
- More with line kinematics (see talk of Timea).
- More statistic required.
- See also Rathborne et al. (2007), Beuther et al. (2007), Rodon et al. (2008), Zhang et al. (2009).


- HOBYS: survey of 0.5 to 3 kpc 22 deg² 70 to 500 μ m.
- Hi-GAL: the whole galactic plane (240 deg² fast scanning 70 to 500 μ m).

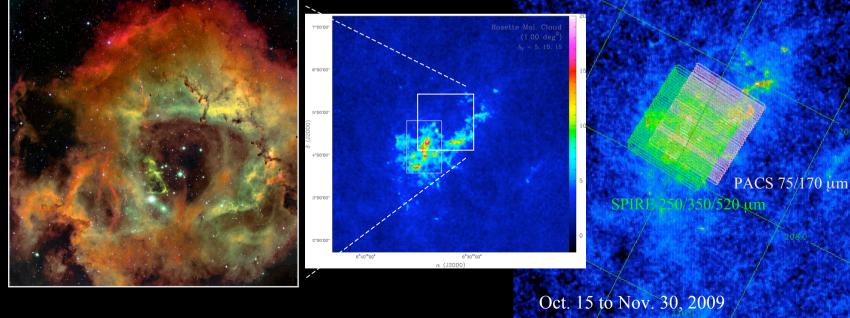
Survey at millimeter wavelength

- ATLASGAL: 1st complete survey, APEX large program.
- BOLOCAM/CSO: only north, reduced spatial resolution.
- SCUBA2/GPS: only north (to be started in 2010).

GT key program from SPIRE & PACS consortium/HSC by André et al.

September 14th, 2009

The Birth and Influence of Massive Stars - Constellation

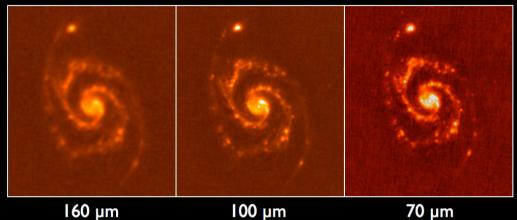

Herschel imaging survey of **OB** Young Stellar objects

A guaranteed time key programme with Herschel Space Observatory Cesa

GT key program from SPIRE consortium/HSC by Motte et al.

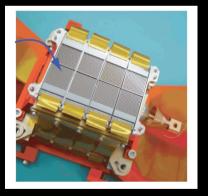
- The "3 kpc opportunity" with Herschel: HOBYS
- Luminosities and masses to test evolutionary scenarios.
- 75, 170, 250, 350 et 520 μm + Spitzer / mm

Science Demonstration Phase: The Rosette Molecular Cloud


September 14th, 2009

The Birth and Influence of Massive Stars - Constellation

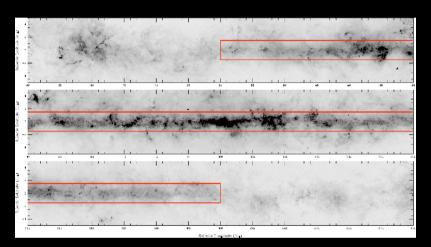
Herschel in space


Herschel/PACS Images of M51 ("Whirlpool Galaxy")

160 µm

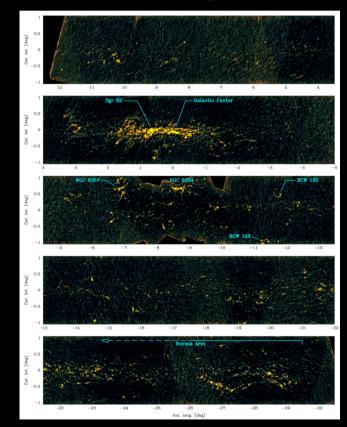
100 µm

© ESA & The PACS Consortium



SDP: Oct. - Nov. 2009 Meeting in Dec.

Launch: May 14, 2009. First light: June 15, 2009


ATLASGAL - The APEX Telescope Large Area Survey of the Galaxy at 870 $\mu {\rm m}$

F. Schuller¹, K. M. Menten¹, Y. Contreras^{1,2}, F. Wyrowski¹, P. Schilke¹, L. Bronfman², T. Henning³, C. M. Walmsley⁴, H. Beuther³, S. Bontemps⁵, R. Cesaroni⁴, L. Deharveng⁶, G. Garay², F. Herpin⁵, B. Lefloch⁷, H. Linz³, D. Mardones², V. Minier⁸, S. Molinari⁹, F. Motte⁸, L.-Å. Nyman¹⁰, V. Reveret¹⁰, C. Risacher¹⁰, D. Russeil⁶, N. Schneider⁸, L. Testi¹¹, T. Troost¹, T. Vasyunina³, M. Wienen¹, A. Zavagno⁶, A. Kovacs¹, E. Kreysa¹, G. Siringo¹, and A. Weiß¹

- -60° to $+60^{\circ}$ & -1.5° to 1.5°
- 2007-2009, good image quality, 18 arcsec resolution.
- ALMA to resolve protostars.
- Hi-GAL (Molinari et al.) will cover the same area.

Schuller et al. 2009, astroph:0903.1369

September 14th, 2009

Open Questions

- Origin of the stellar masses?
- What regulates SF?
- How do massive stars form?
- Relationship with cluster formation?

Observation of protostellar objects - earliest phases of SF

- Far-IR / millimeter / radio Astronomy
- Large-scale MM surveys, HERSCHEL, MM interferometry

Results from Cygnus X

- Direct fragmentation to high-mass protostars?
- Primordial mass segregation observed.