

THE ROLE OF MASSIVE STARS IN STAR FORMATION

DISK PHOTOEVAPORATION AND STAR FORMATION HYSTORY IN THE EAGLE NEBULA

Mario Giuseppe Guarcello

UNIPA- Università degli studi di Palermo

INAF- Osservatorio Astronomico di Palermo

G. Micela – F. Damiani – G. Peres – L. Prisinzano – S. Sciortino

AIMS OF THE STUDY

EVIDENCES OF PHOTOEVAPORATION OF CIRCUMSTELLAR DISKS INDUCED BY NEARBY MASSIVE STARS

HISTORY OF STAR FORMATION IN MASSIVE STARS FORMING REGIONS (SFR)

THE EAGLE NEBULA (M16)

An active SFR in the Sagittarius arm

> Distance: 1800-2400 parsec

NGC6611 in the central cavity, with:

54 OB stars (Hillenbrand et al. 1997)

A population of YSOs (~1-2Myear)

STRATEGY

MULTIWALENGTH APPROACH (BVIJHK[3.6], [4.5], [5.8], [8.0], X-RAYs)

> DISK-BEARING YSOs SELECTED BY INFRARED EXCESSES

> DISK-LESS YSOs SELECTED BY THE X-RAY EMISSION AND OPTICAL COLORS

PHOTOEVAPORATION: SPATIAL VARIATION OF DISK FREQUENCY IN NGC6611

SF HISTORY: CHRONOLOGY OF STAR

ANALYZED DATA

Data	References		
Optical in BVI bands	Guarcello et al. (2007)		
Infrared in JHK bands	Bonatto et al. (2006); Guarcello et al. (2007), Guarcello Ph.D. thesis		
Infrared between 3.6µm-8.0µm	Indebetouw et al. (2007); Guarcello et al. (2009)		
X-rays 0.5-8 keV	Linsky et al. (2007), Guarcello Ph.D. thesis		

- 28827 OPTICAL SOURCES DOWN TO V=23
- 25920 2MASS/PSC SOURCES DOWN TO J=16
- 159999 UKIDSS/GPS SOURCES DOWN TO J=19
- 41985 IRAC SOURCES DOWN TO [3.6]=13

INSTRUMENTS FIELD OF VIEWS

NGC6611 PARAMETERS (Guarcello et al.

from X-ray sources and MS turn-off in V vs. V-I diagram

- DISTANCE: 1750pc
- AGE: <1 3 Myears
- Av=2.6; in M16 increases N and E
- Core radius: 1.30 pc

• Relax.Time: 5.2Myears

DISK DIAGNOSTICS: REDDENING FREE Q INDICES

$$Q_{VIAB} = (V - I) - (A - B) \times E_{V-I}/E_{A-B}$$

- A-B is an NIR color (from J to [8.0]);
- E_{V-I} and E_{A-B} are the reddening;
- V-I rappresents photospheric colors;
- Indices are reddening free

$$Q_{JHHK} = (J-H) - (H-K) \times E_{J-H}/E_{H-K}$$

EXAMPLE: QVIJ[3.6] vs. J-[3.6]

TOTAL OF STARS SELECTED IN M16 WITH Q INDICES:

660 down to 0.2
 solar masses

 290 fainter probable cluster members

Optical sources with normal colors: △

X-ray sources: +

Stare with average in [2 6]

T-Tauri stars from the IRAC color-color diagram

Spatial distribution of disk-bearing YSOs

DISK-LESS CANDIDATE MEMBERS IN M16

X-ray sources with:
1 stellar counterpart
colors compatible with the cluster
no NIR excesses

1117 stars selected

Central Field: 910 disk-less, 532 disk-bearing

DISKS PHOTOEVAPORATION IN NGC6611 > Flux emitted from OB stars and incident on diskbearing and disk-less members.

Average disk frequency in 4 flux bins.

DISK FREQUENCY DROPS CLOSE TO HIGH MASS STARS:

DISKS ARE LESS FREQUENT AT HIGH UV FLUXES:

- members mass obtained from dereddened col-mag diagrams and tracks of Siess et al. 2000
- no effects of photoevaporation for high-mass stars
- disks in low-mass stars more frequent than highmass at low incident flux

 photoevaporation dissipates disks in low-mass stars more quickly than in highmass stars (Adams et al. 2004)

 far away from massive stars disks have normal evolution

SF HISTORY IN THE EAGLE NEBULA

Members age obtained from dereddened col-mag diagrams and isochrones of Siess et al. 2000

MEDIAN AGES: Central-field: 1 Myear common C-E field: 1.4 **Myears**

• E field: 2 Myears

NE field: sparse, mostly younger than 1 Myears

AGE TREND FROM THE

CHRONOLOGY OF SF IN THE WHOLE M16

NO CLEAR EFFECTS DUE TO MASSIVE STARS

Possible External Triggering DSS-I image:

Summary and Conclusions

 Disk-bearing and disk-less YSOs identified in the whole Eagle Nebula

 Photoevaporation efficient in lowmass stars close to massive stars in NGC6611

• Chronology of SF not compatible with triggering by massive stars

• Externally induced SF first events at South-East by giant molecular shell?

BWE stars

King's profile

Multiband catalogs

Number of stars	WFI detection	2MASS detection	IRAC detection	X-ray sources
575	no	no	no	575
20063	no	no	yes	117
2732	no	yes	no	22
14636	no	yes	yes	78
18334	yes	no	no	288
1936	yes	no	yes	204
3122	yes	yes	no	136
5438	yes	yes	yes	480

Number of stars	WFI detection	UKIDSS detection	IRAC detection	X-ray sources
504	no	no	no	504
9468	no	no	yes	89
126286	no	yes	no	116
25510	no	yes	yes	104
11378	yes	по	по	124
787	yes	no	yes	65
10100	yes	yes	no	298
6650	yes	yes	yes	624

Minima excesses

Qstars in CC IRAC:

CCIRAC-excess stars in Q diagrams

Qukidss and O2mass

- 142 sources selected only with Q_{2MASS} ;
- 449 sources selected only with Q_{UKIDSS} , among which 181 are in the 2MASS Point Source Catalog;
- 317 sources in both lists.

Xmedian energy for ClassIII and ClassI/II

Disk Frequency across M16

Absorption map

 obtained from UKIDSS sources without optical counterpart

• $E_{(H-K)} = (H-K)_{observed}$ -(H-K)_{giants}

(Bessel&Brett et al. 1988)

- low Av in the central cavity
- Av increases northward up to Av~10