

MOLECULAR OUTFLOWS TOWARDS O-TYPE YOUNG STELLAR OBJECTS

Ana López Sepulcre

INAF - Osservatorio Astrofisico di Arcetri (Firenze, ITALY)

Co-authors: C. Codella, R. Cesaroni, M. Walmsley (INAF - OAA), N. Marcelino (CSIC, Madrid)

WP2 CONSTELLATION workshop, Prague, 15th September 2009

The sample and observations

Selection criteria

Association with:

(i) H₂O, OH and CH₃OH masers
(ii) High luminosity: 2x10⁴-10⁶ L_{sun}
(iii) Compact or no free-free emission

11 SOURCES

d = 2 - 12 kpc

The sample and observations

Observations

IRAM 30-m radio telescope (Spain)

On-The-Fly mapping with HERA (9beam array working at 1.3 mm)

September 2006

¹³CO(2-1) Outflow tracer
 (220.4 GHz, HPBW = 11")
 C¹⁸O(2-1) Ambient tracer
 (219.6 GHz, HPBW = 11")

The method

Results: outflow maps

High-velocity wings in all the ¹³CO(2-1) spectra Outflow maps for 9 out of 11 sources

Outflows common in high-mass star forming regions: accretion

(López-Sepulcre et al. 2009)

Outflow parameters against luminosity

Outflow parameters determined from the ¹³CO(2-1) emission in the high-velocity wings

Values corrected for optical depth (from ¹³CO(2-1) to C¹⁸O(2-1) ratio

Continuity with data by Beuther et al. (2002); agreement with fits by Wu et al. (2004, 2005)

Our data complement those by Beuther et al. (2002), adding the highest luminosity sources, covering for the first time the O-type range

- o: Beuther et al. (2002)
- : Our sample (corrected for τ)
- \blacktriangle : Our sample ($\tau << 1$)
- --: Fits by Wu et al. (2004, 2005)

Outflow mechanical force against Lyman photon rate

(López-Sepulcre et al. 2009)

 $N_{Ly} \neq$ whole cluster $N_{Ly} =$ massive YSOs

High angular resolution ($< 1^{\circ}$) imaging needed to disentangle outflow multiplicity and associate them with individual sources within the clump

Conclusions

- 1. ¹³CO(2-1) single-dish survey towards 11 high-mass SFRs in search for molecular outflows: FOUND in the whole sample
- 2. Molecular outflows as common in high-mass SFRs as in low-mass SFRs: supports accretion scenario
- 3. Outflow parameters determined and compared to those derived for the sample of Beuther et al. (2002, mostly B-type): continuity with their results, covering for the first time the O-type range
- 4. Higher luminosity sources associated with more energetic outflows
- 5. Correlation between outflow mechanical force, F_{out} , and rate of ionising photons, N_{Ly} , of the associated UC HII regions: supports association of the outflows with the ionising sources

More details in López-Sepulcre et al. 2009, A&A 499, 811

General goals

- Compare the star formation activity of IRDCs with that present in known high-mass star forming clumps: evolutionary trends?

- Check observationally Krumholtz & McKee's result:

 $\Sigma \sim 0.7$ g cm⁻² is the minimum surface density required for high-mass star formation (2008, Nature, 451, 1082)

General goals

- Compare the star formation activity of IRDCs with that present in known high-mass star forming clumps: evolutionary trends?

- Check observationally Krumholtz & McKee's result:

 $\Sigma \sim 0.7$ g cm⁻² is the minimum surface density required for high-mass star formation (2008, Nature, 451, 1082)

The sample

18 IR-dark clumps31 IR-luminous clumps

Selection Criteria (from 1.2 mm surveys) $\delta > -10^{\circ}$ M > 100 M_{sun}: massive d < 4 kpc: angular diameters in the range 1'-2'

General goals

- Compare the star formation activity of IRDCs with that present in known high-mass star forming clumps: evolutionary trends?

- Check observationally Krumholtz & McKee's result:

 $\Sigma \sim 0.7$ g cm⁻² is the minimum surface density required for high-mass star formation (2008, Nature, 451, 1082)

The sample

18 IR-dark clumps31 IR-luminous clumps

Selection Criteria (from 1.2 mm surveys)
δ > -10°
M > 100 M _{sun} : massive
d < 4 kpc: angular diameters in the range 1'-2'

IRAM 30-m observations

HCO⁺(1-0) @ 89.2 GHz HCN(1-0) @ 88.6 GHz C¹⁸O(2-1) @ 219.6 GHz

OTF mapping: 1' x 1' maps

Preliminary results

Outflow detection rate

	IR-dark	IR-lum
Σ > 0.3 g/cm ²	100 %	100 %
Σ < 0.3 g/cm ²	67 %	56 %
Total	83 %	74 %

$$\Sigma = 0.3 \text{ g cm}^{-2}$$

Derivation of outflow parameters in progress ...

Preliminary results

HCO+(1-0) to HCN(1-0) ratio

IR-dark: 1.7 ± 1.5 IR-lum: 0.71 ± 0.23

MORE DETAILS IN WP1 MEETING!

The case of G35.20-0.74

Velocity gradient perpendicular to outflow axis (rotation?)

Bipolar outflow detected

Outflow parameters against clump mass

Best fit to Beuther et al. (2002) data:

$$M_{out} = 0.3 M_{dust}^{0.8}$$

Reasonable fit to our data

M_{dust} > M_{clump} Hofner et al. 2000 (ApJ 536, 393)

Ionising photon rate against bolometric luminosity

Under-luminous clumps

Outflow parameters against luminosity

Outflow parameters determined from the ¹³CO(2-1) emission in the high-velocity wings

Values corrected for optical depth (from ¹³CO(2-1) to C¹⁸O(2-1) ratio)

Continuity with data by Beuther et al. (2002); agreement with fits by Wu et al. (2004, 2005)

Our data complement those by Beuther et al. (2002), adding the highest luminosity sources, covering for the first time the O-type range

o: Beuther et al. (2002)

- : Our sample (corrected for τ)
- ▲ : Our sample (τ << 1)</p>

