Do Massive Stars Form in Isolation?

Richard Parker ${ }^{1}$

Collaborator: Simon Goodwin ${ }^{1}$

1 - University of Sheffield, UK (email: R.Parker@sheffield.ac.uk)

Introduction

- de Wit et al. (2004) surveyed 43 O-type field stars.
- 12% found to be surrounded by a small cluster.
- Many were found to be runaways (see also Gvaramadze \& Bomans 2008).
- 4($\pm 2) \%$ found to be in apparent isolation.
- 5% of B-type stars also observed in isolation.

Introduction

- 70 - 90\% of all stars form in clusters.
- Cluster masses described by single-power law slope; $\beta=1.5-2$.
- Stars in these clusters appear to form with a universal IMF (Kroupa 2002).
- Therefore, one O-type star forms per 200 300 Mo of stars.
- Is the mass of the most massive star in the cluster governed by the mass of the cluster (Weidner \& Kroupa 2004, 2006; Weidner et al. 2009)?

The CMMSM

Low-mass Clusters

Simulations

- Cluster masses chosen at random from CMF.
- Stellar masses:
i) randomly chosen from IMF
ii) constrained by a fundamental CMMSM
- 'Isolated' O-type star fraction (N(sing.)/Ntot):
i) 16% with no constraints 5% if no B-type stars \& Mecl < 100 Mo
ii) 4% with no constraints 0% if no B-type stars \& Mecl < 100 Mo

A median CMMSM?

Other Massive Stars

- In a series of papers, Testi et al. (1997, 1998, 1999) looked for evidence of clustering around $\mathrm{Ae} / \mathrm{Be}$ stars.
- They plotted the spectral type of the most massive star in the cluster against the cluster 'richness indicator' - i.e. cluster mass.

Other Massive Stars

Random Sampling

CMMSM

Conclusions

- $4 \pm 2 \%$ field O-type stars apparently isolated.
- Random sampling produces 5% of low-mass clusters, with a single Otype star.
- Random sampling also recovers the statistical CMMSM relation.
- We argue against it being fundamental.

References

- Parker \& Goodwin (2007), MNRAS, 380,1271
- Weidner et al. (2009), arXiv: 0909.1555
- Weidner \& Kroupa (2006), MNRAS, 365, 1333
- Weidner \& Kroupa (2004), MNRAS, 348, 187
- Maschberger \& Clarke (2008), MNRAS, 391, 711
- de Wit et al. (2004), A\&A, 425, 937
- Testi et al. (1999), A\&A, 342, 515
- Testi et al. (1998), A\&AS, 133, 81
- Testi et al. (1997), A\&A, 320, 159

