Stellar feedback from a super star cluster in the Antennae overlap region

Herrera & Boulanger 2017, A&A, 600,139

Cinthya N. Herrera
IRAM
with Francois Boulanger
IAS

EWASS 2017, S05 High mass stars, their feedback and massive star clusters
June 30th, 2017
Super Star Clusters (SSCs)

One of the most extreme forms of star formation

- Massive (>10^5 M☉) star clusters
- Compact (a few parsec)
- Thousands of O stars

... likely the progenitors of Globular Clusters

The number of such objects greatly increases in galaxy interactions and mergers, common phenomenon in the Universe.

How do they form and early evolve?
Star formation... and inefficient process

Massive star feedback is vital to galaxy evolution and star formation history in the Universe. Radiation pressure and stellar winds are important in unbinding, dispersing and disrupting large molecular clouds (e.g. Murray et al. 2010, Lopez et al. 2010).

Theory: Massive star formation needs high external pressures \((10^7-10^8 \text{ k_B cm}^{-3})\) (Elmegreen & Efremov 1997; Ashman & Zepf 2001). The dynamical timescale of their parent clouds must be shorter than their disruption timescale to have high SFE.

But.... lack of observational support to understand the details
The Antennae galaxy merger

→ We focus on SSCs in the Antennae galaxies to investigate feedback mechanisms of massive star clusters.
Observations

SINFONI/VLT (IFU) in the K-band

- Overlap region
- \(\Theta = 0.6 \times 0.7 \)
- \(\Delta v \approx 100 \text{ km/s} \)

ALMA Cycle 0 (arch.) obs.

- Overlap region
- \(\Theta = 0.5 \)
- \(\Delta v = 10 \text{ km/s} \)
- \(\sigma = 0.1 \text{ K} \)

- \(\bullet \) H\(_2\)
- \(\bullet \) Br\(_{\gamma}\)
- \(\bullet \) K-band

- \(\bullet \) CO(3-2)
- \(\bullet \) continuum

Whitmore et al. (2014)
We focus on SSCs isolated from others (SSCs: D, D1, D2, C, B1)

Look for SSCs associated with compact molecular and ionized gas emission.

Herrera et al. (2012)

Herrera & Boulanger 2017, A&A, 600, 139
SSC B1 is associated with compact molecular and ionized emission. **Hypothesis:** SSC B1 is still embedded in its parent molecular cloud.

→ We investigate the **impact of the stellar feedback** from SSC B1 on its surrounding matter.

Look for SSCs associated with compact molecular and ionized gas emission.

Herrera & Boulanger 2017, A&A, 600, 139
Properties of SSC B1

Well known SSC! 15% of flux 8-15\(\mu\)m (ISO, 1.”5).
(Whitmore & Shweizer 95, Mirabel et al. 98)

\[N_{\text{Lyc}} = 2.2 \times 10^{53} \text{ phot. s}^{-1} \]
(Neff & Ulvestad 2000)

Stellar age = 1 Myr (3.5 Myr)
(Whitmore+10: UBVIH\(\alpha\) photometry; Br\(\gamma\) EW our work)

Stellar mass = \(6.8 \times 10^6\) M\(\odot\)
(Whitmore+10: UBVIH\(\alpha\) photometry)

Molecular mass = \(4.6 \times 10^7\) M\(\odot\)
(dust emission, our work)

K-band spectrum

Herrera & Boulanger 2017, A&A, 600,139
Properties of SSC B1

Two molecular gas velocity components observed in the CO gas

- Low velocity component associated with SSC B1
- High velocity component associated with SGMC4/5

Herrera & Boulanger 2017, A&A, 600, 139
Physical Structure

Modeling of the physical environment (SSC, HII region, PDR)

The observed H$_2$ lines can be modeled by a PDR with a gas pressure of $\sim 10^8$ K cm$^{-3}$.

$P_{\text{gas}} \sim 3\times 10^7 - 10^8$ K cm$^{-3}$

Herrera & Boulanger 2017, A&A, 600,139
Physical Structure

- **Gas pressure in molecular gas**

 \[
 \frac{P_{\text{rad}}}{k_B} = 3.4 \times 10^7 \times (1 + \langle \tau_{\text{rad}} \rangle) \times \left(\frac{[35 \text{ pc}]}{R_{\text{in}}} \right)^2 \text{ K cm}^{-3}
 \]

 Measurement of the cloud’s opacity

- **Gas pressure in hot gas**

 \[
 \frac{P_{\text{hot,X}}}{k_B} = 1.2 \pm 0.4 \times 10^7 \times \left(\frac{[35 \text{ pc}]}{R_{\text{in}}} \right)^{3/2} \text{ K cm}^{-3}
 \]

 SSC B1 is a compact X-ray source (Zezas et al. 2006)

Pressure agrees with that obtained from the PDR models, supporting very low values of τ_{rad}.

Three times weaker than P_{rad} and 50 times smaller than the theoretical value estimated from the mechanical energy input of the SSC.

Herrera & Boulanger 2017, A&A, 600,139
Physical Structure

- Gas pressure in molecular gas

\[
P_{\text{rad}} = \frac{3.4 \times 10^7 \times (1 + \langle \tau_{\text{rad}} \rangle) \times \left(\frac{[35 \text{ pc}]}{R_{\text{in}}} \right)^2}{k_B} \text{ K cm}^{-3}
\]

- There is a leak out of the plasma. The shell around the cluster must be clumpy with moderate column density lines-of-sight through which radiation can escape.

- \(P_{\text{rad}} \) is not enough to push away the matter surrounding the cluster. There will be no further acceleration of the matter by \(P_{\text{rad}} \).

- This component probably did not participate in the formation of SSC B1.
Dynamics of the molecular gas

Broad, high velocity component (associated with SGMC)

\[\Delta v = 100 \text{ km/s} \]
\[V_{\text{LSR}} = 1594 \text{ km/s} \]

It can trace outflowing gas with a \(v_{\text{exp}} \) of 80 km/s. This molecular gas could have been accelerated at earlier stages of the cluster evolution.

Herrera & Boulanger 2017, A&A, 600,139
Dynamics of the molecular gas

CO(3-2) high velocity component channel maps

Supper bubble

Herrera & Boulanger 2017, A&A, 600, 139
Dynamics of the molecular gas

At the beginning of the expansion, radiation pressure must have been much higher than today.

\[F_{\text{rad}} = (1 + \tau_{\text{rad}}) \frac{L}{c} \]

Murray et al. 2010: model the disruption of an environment with similar characteristics to SSC B1. The disruption of the parent cloud occurs in less than 1 Myr.

Gas from the parent cloud of SSC B1 was accelerated at the beginning of the cluster formation by radiation pressure and now it is expanding, leaving the cluster environment.
Outflowing gas

H$_2$ spectra of SGMC 4/5

For high velocity component:
H$_2$ 2-1/1-0 S(1) < 0.18
→ Indicates shocks

Background image: CO high velocity component

Contours H$_2$:
low velocity component

Herrera & Boulanger 2017, A&A, 600, 139
Outflowing gas

H$_2$ spectra of SGMC 4/5

\[\text{Contours H}_2: \]
- high velocity component
- low velocity component

\[\text{Background image: CO high velocity component} \]

\[t_{\text{feedback}} \approx \frac{R_{\text{high}}}{v_{\text{exp}}} \approx 1.2 \text{ Myr} \]

\[\dot{M}_{\text{outflow}} = \frac{M_{\text{high}}}{t_{\text{feedback}}} \approx 30 \text{ M}_\odot/\text{yr} \]

\[\text{SFE (within 100 pc)} \geq 17\% \]

Herrera & Boulanger 2017, A&A, 600,139
Conclusions

• The parent molecular gas of SSC B1 is already disrupted and to witness the early stages of the cloud disruption we have to focus on clusters < 1 Myr.

• There are evidence of gas being pushed away by the stellar feedback in the high velocity gas component.

• We need higher angular resolution observation in order to understand the origin of the low velocity component
 ➔ ALMA Cycle 3 observations of the CO(3-2) line emission and dust continuum emission at 0.”15 resolution (~15 pc) will reveal the morphology and kinematics of the gas in the vicinity of the cluster (Data analysis!!).