The impact of density waves on the distribution of supernovae in galaxies

<u>A.G. Karapetyan¹</u>, A.A. Hakobyan¹, L.V. Barkhudaryan¹, G.A. Mamon², D. Kunth², V. Adibekyan³, L.S. Aramyan¹, M. Turatto⁴

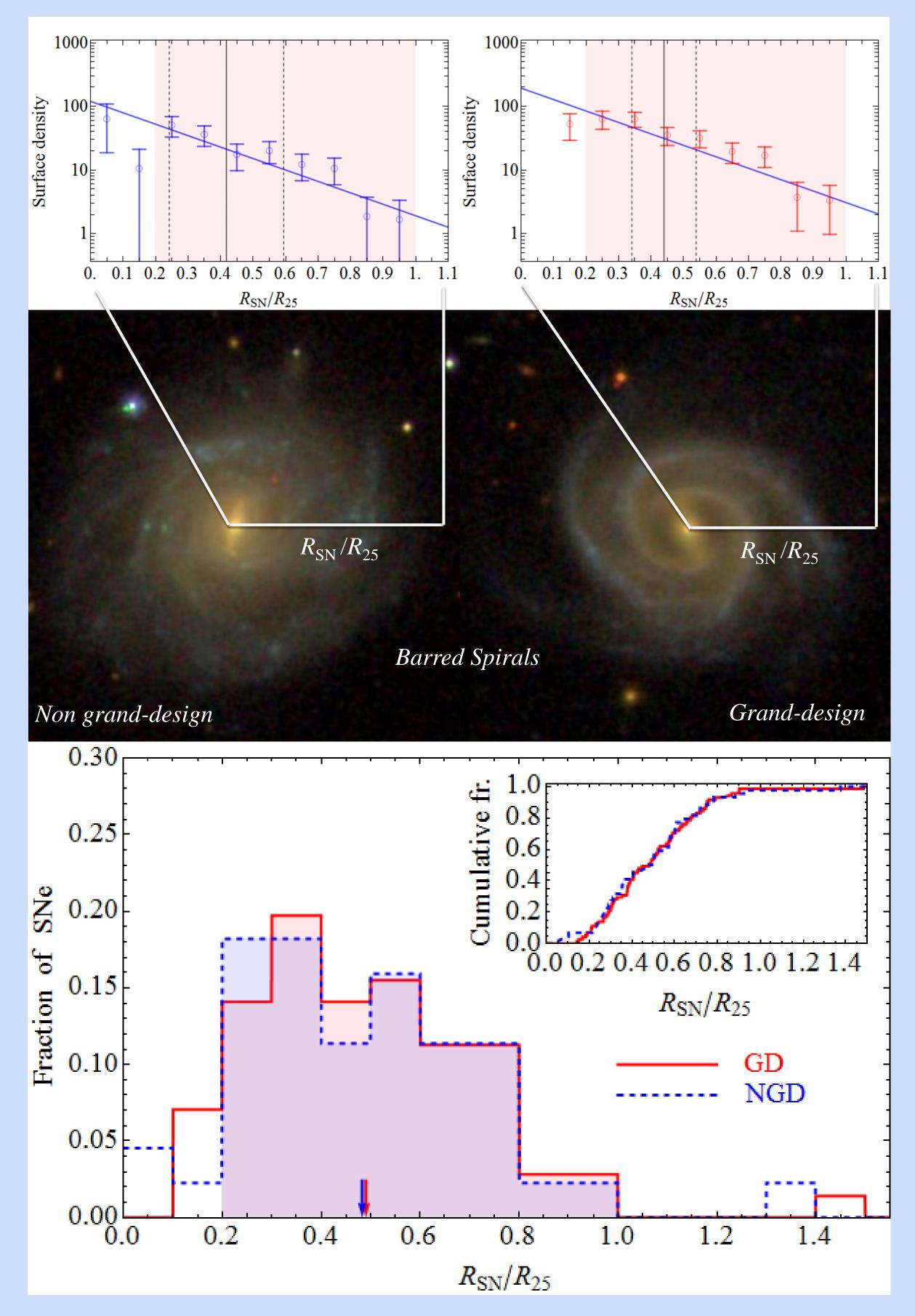
Table 1.

¹ Byurakan Astrophysical Observatory, 0213 Byurakan, Aragatsotn Province, Armenia, e-mail: <u>karapetyan@bao.sci.am</u>; <u>hakobyan@bao.sci.am</u>

² Institut d'Astrophysique de Paris (UMR 7095: CNRS & UPMC), 98 bis Bd Arago, 75014 Paris, France

³ Instituto de Astrofsica e Ciencia do Espaco, Rua das Estrelas, 4150-762 Porto, Portugal

⁴ INAF - Osservatorio Astronomico di Padova, Vicolo dell'Osservatorio 5, 35122 Padova, Italy

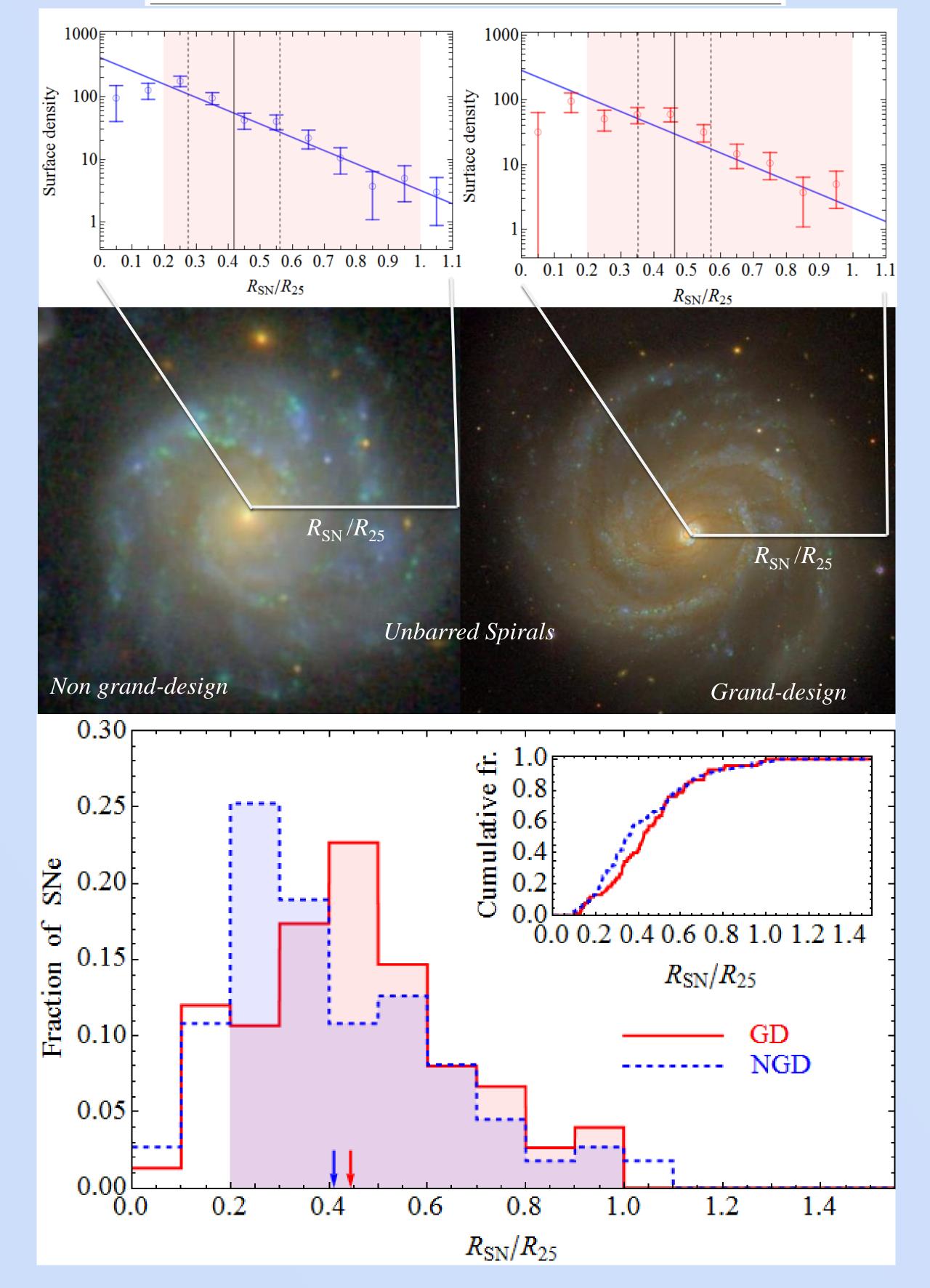

We present an analysis of the impact of density waves on the radial distributions of the different types of supernovae (SNe) in the stellar discs of host galaxies with various morphologies based on the Sloan Digital Sky Survey (SDSS).

THE SAMPLE

- Sa-Sc host galaxies of Type Ia and core-collapse (CC) SNe from SDSS (Hakobyan et al. 2012)
- Morphologically non-disturbed host galaxies (Hakobyan et al. 2014)
- Inclination $\leq 60^{\circ}$ and distance ≤ 150 Mpc
- Grand-design (GD; arm classes 9 and 12) and non-GD (arm classes 1-8) hosts (Elmegreen & Elmegreen 1987; Aramyan et al. 2016)

RESULTS

Kolmogorov–Smirnov (KS) and Anderson–Darling (AD) tests indicate that there are no statistically significant differences between the restricted radial distributions ($0.2 \le \tilde{r} \le 1$) of Type Ia and CC SNe in GD and NGD subsamples (Table 1). However, when we select massive host galaxies ($M_q \le -20$ mag), the distributions of CC SNe in unbarred GD and NGD galaxies


are inconsistent, while in barred counterparts the distributions are not different.

COMPARISON OF THE NORMALIZED, DEPROJECED RADIAL ($\tilde{r} = R_{SN}/R_{25}$) DISTRIBUTIONS OF SNe IN DIFFERENT SUBSAMPLES OF Sa-Sc GALAXIES ($0.2 \leq \tilde{r} \leq 1$).

Subsample 1				Subsample 2				
Host	SN	$N_{\rm SN}$	-	Host	SN	$N_{\rm SN}$	$P_{\rm KS}$	$P_{\rm AD}$
All								
GD	Ia	62	versus	NGD	Ia	107	0.898	0.903
GD	$\mathbf{C}\mathbf{C}$	135	versus	NGD	$\mathbf{C}\mathbf{C}$	148	0.052	0.114
GD	Ia	62	versus	GD	$\mathbf{C}\mathbf{C}$	135	0.734	0.544
NGD	Ia	107	versus	NGD	$\mathbf{C}\mathbf{C}$	148	0.519	0.519
Barred								
GD	Ia	34	versus	NGD	Ia	49	0.810	0.709
GD	$\mathbf{C}\mathbf{C}$	68	versus	NGD	$\mathbf{C}\mathbf{C}$	42	0.992	0.990
GD	Ia	34	versus	GD	$\mathbf{C}\mathbf{C}$	68	0.904	0.765
NGD	Ia	49	versus	NGD	$\mathbf{C}\mathbf{C}$	42	0.936	0.958
Unbarred								
GD	Ia	28	versus	NGD	Ia	58	0.791	0.844
GD	$\mathbf{C}\mathbf{C}$	67	versus	NGD	$\mathbf{C}\mathbf{C}$	106	0.069	0.071
GD	Ia	28	versus	GD	$\mathbf{C}\mathbf{C}$	67	0.434	0.545
NGD	Ia	58	versus	NGD	$\mathbf{C}\mathbf{C}$	106	0.440	0.413
All $(M_{\rm g} \leq -20)$								
GD	Ia	58	versus	NGD	Ia	95	0.884	0.910
GD	$\mathbf{C}\mathbf{C}$	130	versus	NGD	$\mathbf{C}\mathbf{C}$	134	0.012	0.037
GD	Ia	58	versus	GD	$\mathbf{C}\mathbf{C}$	130	0.676	0.517
NGD	Ia	95	versus	NGD	$\mathbf{C}\mathbf{C}$	134	0.397	0.315
Barred $(M_{\rm g} \leq -20)$								
GD	Ia	33	versus	NGD	Ia	45	0.810	0.709
GD	$\mathbf{C}\mathbf{C}$	65	versus	NGD	$\mathbf{C}\mathbf{C}$	40	0.866	0.964
GD	Ia	33	versus	GD	$\mathbf{C}\mathbf{C}$	65	0.692	0.701
NGD	Ia	45	versus	NGD	$\mathbf{C}\mathbf{C}$	40	0.767	0.869
Unbarred ($M_{\rm g} \leq -20$)								
GD	Ia	25	versus	NGD	Ia	50	0.995	0.951
GD	$\mathbf{C}\mathbf{C}$	65	versus	NGD	$\mathbf{C}\mathbf{C}$	94	0.042	0.030
GD	Ia	25	versus	GD	$\mathbf{C}\mathbf{C}$	65	0.704	0.660
NGD	Ia	50	versus	NGD	$\mathbf{C}\mathbf{C}$	94	0.400	0.304

Figure 2 is the same as Figure 1, but for barred host galaxies.

Table 2.CONSISTENCY OF CC AND TYPE IA SN DISTRIBUTIONS WITH AN EXPONENTIONALSURFACE DENSITY MODEL IN Sa-Sc GALAXIES WITH $0.2 \le \tilde{r} \le 1$ AND $M_g \le -20$.

Host	SN	$N_{ m SN}$	$P_{\rm KS}$	$P_{\rm AD}$	${ ilde h}_{ m SN}$
(1)	(2)	(3)	(4)	(5)	(6)
All					
GD	Ia	58	0.744	0.958	0.22 ± 0.03
NGD	Ia	95	0.468	0.573	0.22 ± 0.02
GD	$\mathbf{C}\mathbf{C}$	130	0.387	0.188	0.25 ± 0.03
NGD	$\mathbf{C}\mathbf{C}$	134	0.841	0.917	0.20 ± 0.02
Barred					
GD	Ia	33	0.901	0.942	0.22 ± 0.04
NGD	Ia	45	0.707	0.701	0.23 ± 0.04
GD	$\mathbf{C}\mathbf{C}$	65	0.713	0.715	0.25 ± 0.03
NGD	$\mathbf{C}\mathbf{C}$	40	0.876	0.885	0.24 ± 0.04
Unbarred					
GD	Ia	25	0.910	0.909	0.22 ± 0.08
NGD	Ia	50	0.549	0.876	0.22 ± 0.03
GD	$\mathbf{C}\mathbf{C}$	65 <	0.352	0.168	0.24 ± 0.03
NGD	$\mathbf{C}\mathbf{C}$	94	0.865	0.976	0.18 ± 0.02

The radial distribution of CC SNe, in contrast to Type Ia SNe, has the weakest consistency with the exponential surface density profile in massive unbarred GD hosts (Table 2). While the distributions of both the types of SNe are well consistent with the exponential profile in massive barred GD hosts, as well as in barred and unbarred NGD galaxies.

CONCLUSIONS

The results can be explained by the additional massive star formation, which occurs directly at the inner and outer sides from the corotation radius (Figure 1), most effectively in massive galaxies, and appears to be caused by the density waves in unbarred GD galaxies. In barred GD galaxies this effect is unseen (Figure 2) because of the suppression of massive star formation within bar radius (see James et al. 2009; Hakobyan et al. 2016). In NGD galaxies, the density waves are weak and does not affect the distribution of SNe.

Figure 1. Upper panel: surface density distributions of SNe in unbarred NGD and GD Sa-Sc hosts. The blue lines show the best-fit exponential surface density profile estimated for the restricted NGD discs. The mean corotation radius (black solid line) with the one-sigma interval (black dashed lines) are mentioned. Middle panel: examples of the spirals. Bottom panel: histograms of the distributions. The insets present the cumulative distributions. The mean values of the distributions are shown by arrows.

Acknowledgements

This work was supported by the RA MES State Committee of Science, in the frames of the research project number 15T-1C129. This work was made possible in part by a research grant from the Armenian National Science and Education Fund (ANSEF) based in New York, USA.

REFERENCES

- Aramyan, L.S., Hakobyan, A.A., Petrosian, A.R., et al. 2016, MNRAS, 459, 3130.
- Elmegreen, D.M., Elmegreen, B.G. 1987, ApJ, 314, 3.
- Hakobyan, A.A., Adibekyan, V.Z., Aramyan, L.S., et al. 2012, A&A, 544, A81.
- Hakobyan, A.A., Nazaryan, T.A., Adibekyan, V.Z., et al. 2014, MNRAS, 444, 2428.
- Hakobyan, A.A., Karapetyan, A.G., Barkhudaryan, L.V., et al. 2016, MNRAS, 456, 2848.
- James, P.A., Bretherton, C.F., Knapen, J.H. 2009, A&A, 501, 207.