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Introduction

The purpose of this work is to include the non-linear terms to the analysis
of the fragmentation of expanding HI shells. It is an extension of previous
linear analysis which was performed by Elmegreen (1994). We use the simi-
lar approach as Fuchs (1996) who described the fragmentation of uniformly
rotating self-gravitating discs.

If some conditions are fulfilled, the HI shell may become gravitationally
unstable and then it may break to fragments. Inclusion of higher order terms
to the analysis can help us to determine with better accuracy the time when
the shell is fragmented than the linear analysis.

The thesis is divided in seven sections. In the first and the second section
are HI shells introduced, in the third section some models of the HI shells are
described, in the fourth section are derived hydrodynamical equations for the
cold and thin shell, which is expanding into the uniform ambient medium.
In the fifth section the linear analysis of the shell instability is presented.
The criteria for the shell instability is the same as in (Elmegreen 1994), but
it was derived by another formalism. In the seventh section are nonlinear
equations solved, and it is shown that the interaction of the perturbation
modes of the shell surface density occurs, similar to the case of the rotating
self-gravitating disc (Fuchs, 1996).

In the appendix the complete derivation of non-linear equations is given.



1 General information

1.1 What are HI shells

HI shells are structures in the neutral hydrogen in galaxies. They are regions
filled by the hot gas of the low density surrounded by the dense thin shell.
The scales of these shells are from 10 pc to 1—2 kpc. The typical density in the
cavity is 1073 — 10~* hydrogen atoms per em?, the typical surface density
of the shell is 10?° — 10?! hydrogen atoms per e¢m?. In the most common
concept HI shells are the result of the shock wave in the ISM created by a
very energetic explosion. For instance the shock wave after the SN explosion
sweeps up the ambient medium and by this way it creates a cavity filled by

the hot gas surrounded by the cold dense thin shell.

1.2 Discovery of HI shells and supershells

First observations of HI shells in the Milky Way appear more than 40 years
ago (Menon, 1958). Later, many shells and supershells were discovered by
Heiles (1979) in the Weaver and Williams (1973) HI survey of the Milky Way.
HI shells were also observed in LMC, SMC and other nearby galaxies.

1.3 Origin of HI shells

The typical energy needed to create a shell or supershell is 10°" — 10%* ergs.
It means that single SN with the energy 10°! ergs can be responsible only
for the smallest structures. Larger shells and supershells can be created by
an OB association with 10 — 100 massive stars. These stars have short live
time and finally explode as supernovae, so they can add with the stellar
wind and SN explosions the energy to the cavity. The most energetic shells
(10°% — 10°%ergs) may be formed by the group of several OB associations.
Alternatively, HI shells can be formed by encounter of the galactic HI plane
with a high velocity cloud or a dwarf galaxy. Recently, also explosions con-
nected to GRB are considered.

2 Why are HI shells interesting

2.1 Propagating star formation

During the expansion into the ambient medium, new mass is accreted to
the shell while its expansion velocity and temperature are decreasing. In
the typical density of the ambient medium 1 em 2 the swept up mass is



between 10* — 107 M. The shell may become gravitationally unstable and
fragment and form new molecular clouds, in which new stars may form. By
this mechanism HI shells can propagate the star formation.

2.2 Disc halo connection

In galaxies with thin gaseous discs, for instance in rapidly rotating spiral
galaxies, the shape of the shell is strongly affected by the z-distribution of
the gas: cylindrical, z-elongated structures called worms may form. The
worm can break through the disc and even open to the galactic halo. These
ones are called blow-out shells and chimneys.

In case of a blow-out shell, the hot gas from the shell interior enriched by
metals made by stars escapes to the halo. It can be the way how to explain
the observed hot metal rich halo gas (Cox & Smith, 1974; McKee & Ostriker,
1977).

3 Models of HI shells

3.1 Sedov solution

The simplest model of the expanding shell was invented by Sedov (1959).
The infinitesimally thin shell approximation is considered in a solution of
equation of motion of a strong shock propagating into the ambient medium.
The equation of motion has form:

L V) = S(Pus ~ Pox) )
where m is the mass of the shell, V' is expansion velocity, S is surface of the
shell and P,,; and P,,; are the pressures inside and outside of the shell. In
the solution of Sedov (1959) the external pressure is neglected. In case of
spherical symmetry and abrupt energy input have the solutions for radius of

the shell R and expansion velocity V' form:

R ~ By®.ng'l" .25
Vo~ By g

(2)

)

where FEj is the input energy, ny is density of the ambient medium and ¢ is the
time since the beginning of the expansion. In case of cylindrical symmetry
the solutions have form:

R ~ EJ/*Y . p 't 2
Vo~ Byttt

(3)

)
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and in case of spherical symmetry and continuous energy input have the
solutions form:

R ~ (NSN . ESN)1/5 . nal/5 . t3/5

V ~ (NSN . ESN)1/5 . nal/5 . '[/‘72/5 ,

(4)

where Ngpy is the supernova rate and Fgy is energy of one supernova.

3.2 Chevalier’s formula

The relation which enable us to estimate the energy of the observed shell
was obtained by Chevalier (1974) from one dimensional hydrodynamical sim-
ulations. He used model of the spherically symmetric shell expanding into
uniform medium. The external pressure and cooling were considered.

His computation is resulted in Chevalier’s formula:

E, 7< no >1.12< v >1.4 R\
—— | =5.3-10 — . 5
<1050 erg) cm—3 km s—! pc (5)

3.3 Other computer simulations

Two dimensional computer simulations with the thin shell approximation
have been performed by Mac Low & McCray (1988) and Mac Low et al.
(1989) using the hydrodynamical code ZEUS. The ambient medium stratified
in the direction perpendicular to the galactic plane was considered and the
possibility of the creation of blow-out shells was shown.

Other computer simulations in 2D using the thin shell approximation
have been performed by Tenorio-Tagle & Palous (1987). This approxima-
tion is also called 141/2 dimensional, which includes the galactic differential
rotation.

The 241/2 dimensional models (thin shell approximation in 3D) have
been developed by Palous (1990, 1992), Silich (1996) and Ehlerova et. al
(1997). Beyond the z-stratification of ambient medium and galactic differen-
tial rotation they include also cooling and evaporation of small preexisting
interstellar clouds.

4 Basic equations

We consider a cold and thin shell of radius R in three-dimensional space with
hot interior expanding with velocity V' into a uniform medium of density p,.
The intrinsic surface density of the shell o is composed of unperturbed part

7
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Figure 1: The deﬁmtzon of the coordinates. On the shell surface are used
angular coordinates 6 = /R for the position and the angular velocity Q=
U/ R for the surface flows, where U is a normal 2D velocity.

oo plus the perturbation oy (0 = 0y + 01). Perturbation oy results from the
flows on the surface of the shell redistributing the accumulated mass. We
assume that og corresponds to R as 09 = poR/3, which means that all the
encountered mass is accumulated to the shell. (It comes from 37w R?py /47w R?).

We can write the mass conservation law for a small area A = 4raR? of
the shell, where « is angular size of the area.

oM

BT +V . -Mv=0, (6)
where M is total mass in the area, 7 denotes a two-dimensional velocity of
surface flows: ¥ and ¥ = & are two-dimensional vectors in the tangential
plane of the shell at the central point of the area A. We consider angular
coordinates © = #/R and angular velocity = /R to describe the surface
of the shell (see Fig. 1). With M = oA we obtain continuity equation in a
form

0 Vv
a—j+20—+aRv G+ RG-Vo=0. (7)
The equation of motion for the element of mass M and area A has form
1 d(M7) 9
— - _ B ¥
YT c*Vo — oV, (8)

where ¢ is constant isothermal sound speed, ® is gravitational potential of
the shell. Assuming M = 47raR?*py/3 and A = 4raR? we can write it as

ﬁ - — — — 2
R%—t+R2Q-VQ+VQ+3VQ@ = -SVo- Vo 9)
o g



The gravitational potential ® is related to the surface density by the
Poisson equation
AD = 41God(z), (10)

where G is the constant of gravitation and d(z) is a delta function of coordi-
nate z perpendicular to the surface of the shell.

5 Perturbation analysis

We assume a small perturbation of the shell surface density o; < oq which
evolves due to surface flows given with velocity ¢. The related perturbation
of gravitational potential ®; can be derived from the Poisson equation. We
rewrite the equations (7), (9) and (10) in form

do V - -
8—;+201E+0RV-Q+RQ-V01:0, (11)
0 L= 2 - -
R L 6. vh = S (- Ve, — v, — v 4 3v6T, (12)
at (o) (o) o}
A®; = 4rGoyd(z), (13)

where the 1/0 in equation (9) was evaluated up to quadratic terms in oy.
These equations may be Fourier transformed with respect to the spatial
coordinates similar to Fuchs (1996)

Q=G+ 3 G0 (14)

where 77 denotes a dimensionless wavevector 77 = kR. We assume no surface
macroscopic flow through the all considered area which means Qg = 0. Fur-
ther we assume oy = 0 (mass accumulation due to expansion to the ambient
medium is included in 0y). The Fourier transform of the equation (11) is

. L R V = -
Oq + 0'0(277 . Qﬁ) + 2E0'ﬁ + Z(Qﬁ_ﬁl . 277)0'771 =0 (15)
7

where 77 + (7 — 77) = 77 was used. The Fourier transform of Euler’s equation
(12) is



g g
7

+27TGW 4VQﬁ+ O_—OZQﬁ_ﬁrJﬁr, (16)
7

where the following solution of Poisson equation was used

Vo 27r(;za,7‘4| " (17)

6 Linear analysis

6.1 The instability criteria

Linearized equations (15) and (16) have form

v
o7 =0 (18)

&5 + oo (i - O )+2R

2

— —

RQﬁ ZliZO'77 + 27TG| ‘ 4VQﬁ (19)

00
Angular velocity Qﬁ can be split in two components parallel and orthog-
onal to the wavevector 77

Gy =0y U4 1 (20)

G un

We get the set of equations

(21)

(22)

O = —ZEJ,? inoosly,
. 2rG c*n 1%
Qg = (i R 0 RQ) 4§Qﬁn
. \%
O, = —4=9, (23)

To solve the set of equations (21) - (23) we assume a time dependence

oy Qs Qi ~ el (24)

) s
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Figure 2: Left: The time dependence of the imaginary part of the w®, which
can cause the instability. Right: The imaginary part of the same w® de-
pending on the wavevector 1 for three times. If the imaginary part of w®
is negative, the shell is unstable. The Sedov solution was used with follow-
ing parameters: total energy E., = 10%erg, density of ambient medium
ny = 1 em™3, average molecular weight ;1 = 1.3, sound speed in the shell
c=1km-s!

We get the eigenvalues

12 .3V V2 n2¢2 2nGogn
Wy _Zfi\/_ﬁ—i_ R (25)
3 _ 4V
Wy = z4§ : (26)
The w®?) in equation (25) are almost the same as in equation (6) in
Elmegreen (1994). The related eigenvectors are
O (1.2) —inoy
Qi = | iw? 4+ 2% (27)
Q. 0
Oq ®) 0
Qg =10] . (28)
un 1

The wy are time dependent, so the assumption (24) is fulfilled only in

the short time interval, in which wz(¢) changes not too much. But it can
(3)
u
has always meaning of the decrease of perturbations. If w%l’Q) have got a

be used as a criteria of the shell’s instability by the following way. The w

11



(1) indicates

real part, solution is stable with decreasing oscillations. If not, w;

,(72) can be imaginary negative and it have meaning of the growth
of perturbations. The time evolution of the imaginary part of the w%g) is
shown by figure 2.

The eigenvalues wy depend also on the magnitude of the wavevector 77 as
suggested by figure 2. The n with the maximum perturbation growth rate
can be found. This was done by Elmegreen (1994).

The maximum perturbation growth rate is:

decrease, w

12 _ .3V V2 m2G2o?
wﬁ,maz - Zf + \/_ﬁ - 2 (29)
and occurs at the wavenumber:
mGoy R
Nmaz = 2 . (30)

6.2 The time of the fragmentation

If the shell is unstable, i. e. the imaginary part of the w® is negative, for

the certain time, the shell may break to fragments. In Ehlerovd et al. (1997)
the fragmentation integral is defined as:

t
Iprag(t) = [ s ()t (31)

ty ’
where t; is the time when the instability begins. The fragmentation time ¢y,

(the time when the shell is decomposed to fragments) is defined as the time
when the fragmentation integral is equal to one:

t
Ipeagtr.)) = [ wfZus(#)at =1 (32

ty
7 Non-linear analysis

7.1 The non-linear equations

We rewrite the non-linear equations (15) and (16) in the form

Oif o
QﬁH =L Qﬁ” + N ) (33)
QﬁJ_ Qﬁi-

12



where L is the linear part and N represents the non-linear terms. We search
for a solution of equations (33) as a combination of the eigenvectors obtained
from the previous linear analysis

(M (2) 3)

O i i i
Qﬁu = 77b77(t) Qﬁu + gﬁ(t) Qﬁ” + ¢ﬁ(t) Qﬁu ) (34)
U un U Q?ﬁ

where ), &) and ¢y are time dependent amplitudes of the eigenvectors.
We find orthonormal vectors (o, Q5 , 25, )**% in order that

(2) (57#1)

' O . O
(o7, QﬁWQﬁL)(Z) Qﬁu =1, (o7, Qﬁu’Qﬁl)(z) Qﬁll =0,
i QﬁL

where 7 = 1,2,3. The orthonormal vectors are

1 iw®42% ;
(Uﬁ7 Qﬁu ) Qﬁi)( ) = ngo(w(l)_f(g)) J (w(l)iw(g)) .0
iw)2Y¥ i .
(Oﬁa Qﬁu ) Qﬁl)(g) = ngo(ww),f(l)) P W@ —w(D))’? 0 (35)

(o, iy, 27,)® = (0,0, 1)

We insert ansatz (34) into equation (33), multiply it by the orthonormal
vectors (35) and obtain a set of equations for amplitudes t;11), {5 and ¢y

(1)
o o

’Lbﬁ = iw(l)wﬁ + E Qﬁ” . (O'ﬁ, QﬁH ) Qﬁl)(l)wﬁ +
Ui
N\ (2)
o 1) 1)
+§ g”” ) (Uﬁ’ Qﬁu ) Qﬁj_) 577 + (N: (Oﬁ: Qﬁ” ) Qﬁj_) ) (36)
L
. 5 ( o7 (2
fﬁ = iW(Q)fﬁ + & QﬁH ) (Jﬁ’ Qﬁu ) Qﬁl)@)fﬁ +
s
2\ (D)
0 @) @)
+& gﬁ ) (Uﬁﬂ Qﬁ” ) Qﬁj_) wﬁ + (N: (Oﬁ’ Qﬁu J Q?ﬁ) ) (37)
1

13



(3)
L o n
br =5t o | Q| (052, Q)P dg+ W, (07. 95, 242,)) (38)
0O~

nL

The most interesting is equation (37), because it has w® in the first linear
term, and only the w® can be imaginary negative, which has meaning of
instability. Equations (36) and (38) have in the first linear term “stable” w(")
and w®. The second linear term (with time derivatives) and the nonlinear
terms are too small against the first linear term. The solutions of equations
(36) and (38) have decreasing or oscilating character.

Using (34) we get an explicit form of the equation (37)

L . ‘ N _—
éﬁ = iw(g)fn - (0 + Uao)(zw(l) i 2%) + “700(%0(2) + QVRmV )

170 (@) — @) i

i(100 + 160) (1w + 2Y) + inoy (iw?® + 2VEV
_ R R ID*
noo(w® — w®) 7

R v L p
N0o (w(l) — w(Q)) ; { [ZR (wn*n + 57]*7] )

_|_

: (7 — 17,17 (7 =17, 7)
+1 (w(1)¢ﬁ_ﬁ +w(2)§ﬁ_ﬁr)] ‘_,_ ﬁ’| + d)ﬁ—ﬁ’ |_,_ iu

1 V
[=inf o0 (y + &) + —7——5 = { |25 o + o)

(7 —17.17) (17— 7L, 17)
+Z(w(1) _‘7_‘1 +w(2)5_‘7_‘,) g +¢_‘7_‘I g
n ) gl T =i
1% . (77, 7) (7., 17)
2— (w—q —|—5—4) —|— 7 w(l)w_., +w(2)§_,, — ’ - + ¢_‘, ’ =
{{R o (s ) il ]

— ., ., 9_

[ (] 00(77/}77 + fn )] ‘77| + Roy (w(1) _ w(2)) TIZ R

Vi + i) + (WD + wP &) | 12 L

Wi + Sae) iy

+¢ﬁ*ﬁ' |77_ ﬁi ‘77| [_”7’0-0(“77' + Vﬁ')] (39)
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Figure 3: Left: If n = n' = |7 — 7| = Nmaz, the wavevectors build an equi-
lateral triangle. Right: The mode 1] interacts with two modes inclined at an
angle 60° to the wavevector 1.

7.2 The interaction of modes

In analogy to Fuchs (1996) we group together components with fully imaginar
wy into wavepackets and take the wavenumber 7,,,,. Other components are
grouped to the wavepackets of the same width and approximated by the
average wavenumbers. The &z modes grow, the ¢ . and the ¢z . modes
descend. Other modes oscillate with decrease. The descending modes couple
to the &;,,, through non-linear terms, they lead to the third order terms,
and they may be neglected against terms of second order in &; . .

If we demand n = n' = |[if — 7]'| = Nmaz We obtain from geometry (see fig.
3)

(777 i) = %nzna:r Lo (77777_ _Vi) = %77727111112 (40)
(_a’+777 - 77’4») = ~5Mmax (77’7777 - 77’7) = 7 9"Mhmax ,
where 77, and 77 are two wavevectors inclined at angles 60° to the wavevec-
tor 77. It means that {; wavepackets non-linearly interact with others with
wavevectors 77,. Using equation (25) and geometrical considerations (40),

the set of equations (39) can be simplified to the form

1 7Gog (8V?c? — 3n*G?03 R? + i8c*RV'Y)

e
: 1 7Gog (8V2? — 3n*G?oi R? + i8c*RV'Y)
(2 0 0 *
& = wPE +aly — 1 ReAy 33
: 1 7Gog (8V2? — 3n*G?oi R? + i8c*RV'Y)
. (2 0 0 *
& = iw?e +ag - i £€L (41)
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Figure 4: The solution of the set of equations (41). The initial values were
chosen randomly with gaussian dispersion which corresponds to perturbation
of the surface density oy = 1,4 - 10" em=2. The Sedov solution was used
with following parameters: total energy By, = 10° erg, density of ambient
medium ng = 1 em™3, average molecular weight u = 1.3, sound speed in the
shellc =1 km - s71.

where
V2e2 + 12G202 R2
R \/ = e (42)

and

—i260R2V Y — 260 R3¢2%2 — 0o R2V 2.2 — oy R2V 2% N

o =
200R3 %Y
0oRVVE + V3¢ + 0260m*G2R?
+ o0 Pe2S (43)

The set of equations (41) decribe the time evolution of one triplet of the
most interacting modes (7, 7, 7).

7.3 The numerical solution

The set of equations (41) can be solved numerically. We start at the time ¢,
2)

7.mag Starts
H

which is the time when the instability begins (imaginary part of w
to be negative).

16
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Figure 5: The evolution of the mazimum perturbation of the surface density
in the case of solution presented in figure (4).

Initial conditions are chosen randomly with the gaussian dispersion. It
has meaning of initial perturbations of the surface density and the velocity.
The magnitude of these perturbations in physical values can be computed
from the eigenvectors (27).

The solution is determined by paramaters of two types. The first ones
are constant values (as speed of sound ¢ in the shell) which can be chosen
without any problems. The second ones are functions of the time (the radius
of the shell R(t), the expansion velocity V (¢) and the surface density o¢(t)).
We can obtain them from the Sedov solution (2) or (4) or from the computer
simulation of the shell.

We use the Runge-Kutta of the fourth order with variable step for the
numerical integration. The typical solution is presented in figure 4. Figure
(5) shows the appropriate evolution of the maximum perturbation of the
surface density.

With this solution, eigenvectors (27) and equation (16) written for modes
(7,7,7-) only, we can get the surface density and the velocity field in a
part of the shell. It was done and the result is shown by figures (7) and (8).
These figures show the one triplet of the interacting modes.

In reality, there can be more triplets of the interacting modes. Figures
(9) and (10) show the similar situation, but two triplets of the interacting
modes inclined at angle 30° were combined.

17



1.8e+20

+ t_f,nl‘ +
t t £ (I_frag=1)
— 1.6e+20 - + q
Y +
< i+
E 1.4e+20 |+ + B
2
£ .
& 12e+20 | N R
kel -
8 +
8 le+20 . B
S +
7] + |+
S ge+19 | . g
5
g &
o 6e+19 b
£ T+
[}
S 4e+19 * R
8 +
= +
c
= 2e+19 + ot q
0 Il Il Il Il Il Il Il
0 10 20 30 40 50 60 70 80
t [Myr]

Figure 6: Dependence of the fragmentation time on initial perturbation of the
surface density.

7.4 The time of fragmentation in the nonlinear theory

The evolution of the maximum perturbation of the surface density can be
used to determine the fragmentation time of the shell. Because at advanced
stages of the fragmentation the value of the maximum perturbation rises
steeply with the time (see figure 5), we can define it as the time, when
maximum perturbation of the surface density is equal to unperturbed value
(o1 (tr) = oo(tsn))-

The fragmentation time ¢ ) defined by that way depends on initial condi-
tions of the set of equations (41). They correspond to the initial perturbation
of the surface density. We can set them to the value typical for the inho-
mogenities in the clumpy interstellar medium (10" — 102 em™2).

In figure (6) we show the dependence of the fragmentation time obtained
from the solution of the non-linear equations on the value of the initial per-
turbation. This time may be compared to the fragmentation time obtained
from the linear analysis defined as a time when I,,, = 1.

18



Conclusions

An interaction of modes occurs on the shell surface. It is the interaction of
three modes which are inclined at the angle 60° and is of the type discussed
in Fuchs (1996).

Fragments form a few of tenth Myr after time when an instability begins.

Time when fragments form depends on initial conditions. If the initial
perturbation of surface density is of the order ~ 10" — 10%° em~2, which
is a typical value of inhomogenities in the ISM, the fragmentation time is
approximately of the same value as the time when the fragmentation integral
Itrag = ft'; w(t")dt" (which was defined in Ehlerova et al., 1997, ¢ is time when
the instability begins) is equal to 1.

Acknowledgment: ~ We would like to thank Burkhard Fuchs. This work
was inspired by his paper on the fragmentation of uniformly rotating discs
(Fuchs, 1996). We are also greatful for an enlighting discussion in Heidelberg
in March 2000.
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Figure 7: The density evolution on the shell surface. One triplet of interacting
modes is considered.
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Figure 8: The evolution of the velocity field on the shell surface. One triplet
of interacting modes is considered.
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Figure 9: The density evolution on the shell surface. Two triplets of inter-
acting modes are considered.
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Figure 10: The evolution of the velocity field on the shell surface. Two triplets
of interacting modes are considered.
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A Derivation

A.1 Basic equations

R, V, Lo, o =0+ 0y
gy — poR/S (: %WR3PU/47TR2).

Continuity equation

oM
el M =
Y +V U ,
©=2/R, QO =7/R
M =0cA, A=4raR?
oo 0A - -
—A — + AoV - RQ) Q-VoA =
5 +06t+ oV -RQ+ RQ)-Vo 0
do

ot R
Equation of motion

1 d(M7)
A dt
M = 4raR?py/3, A = draR?

= —’Vo — oV,

dM
E =3- 47TO(R2PUV

di . o0
= _VvQO+ R
df T iy

—

os2
ot

o

Poisson equation
Ad = 47God(z),
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\% - .
— +20—=+4+0RV -Q+ RQ)-Vo=0.

/A

2
R—+R2Q-VQ+VQ+3VQ% — S Vo-vVo

(10)



A.2 Perturbation analysis

Continuity equation

a@—j+20%+0RV-Q+RQ-VG=U-

0 V
—(% +200E = 0)

60'1 \%

E+201E+0RV-Q+RQ-V01=O, (11)

Equation of motion

Q‘ . . . . 2
R L RG va+vi+3va% — —Cve - vo
ot o o
VO' = VO'l
a0 . = - - 2
R4+ RG-VA+VA+3vi1 -2 = -1 -2V, - VO
ot g o) 0o
—(0=va,)
0 . o 2 - -
R L 6. vh = S (1— Ve — v, — v 4 3v6T, (12)
ot o 0o 0o
Poisson equation
Ad = 47God(z),
—(A@O = 47TG006(Z))
AcI)l = 47TGO'15(Z), (13)
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A.3 Fourier transformation

G =g+ > Oy (14)
7
7=kR.
We assume 2y =0, 019 =0
7+ (7—1) =1

Continuity equation

L

. Y- V .
010 + ZO’ﬁ@m © + 25(0'10 + Zaﬁe”’ ) +
7 7

L

=

+0'0RV . (ng + Z Qﬁez ' ) +
7

+R(O’10 + Z dﬁeiﬁ'é)v . (Ql[] + Z Q’ﬁeiﬁ.é) +
Ul U]

n=20:

. 14 = > >
O10 + QEOIU +R> (- (—ik))o_z+ R oz((—ik) - Q_3) =0
)

N#A0 1 a6 42V T 5060 4 00 RV - (5 (679) +

o7+ oo(iff - Q) + 207+ S (U - i) oy =0 (15)
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Poisson equation
ADy = 4rGoyd(2),

We need:
ce (I)l = Z @1,76“;.7? = Z CI>1,76”7@
i 7

z=10
k

ansatz: ®; =Y ; <I>1ﬁeiE'F_‘E‘Z
we integrate from z = —(toz =+(, ( = 0

[0y
%1_r)r(1) 0 dz = 4nGoy /—C §(z)dz
0B,
213% 5, > = 4rGo,
— Z 2/;<I>ﬁeiE'F =A4rG Z JﬁeiE'F
k k
2nGoy
1= ==
14
(I>1 = —27TGZ 0;7,7 ik
L
k oir e
Vo, = —27G Y o; Pk — _onG > an@e”"@ (17)
oo v
Euler’s equation
R(Sho + 3 G5¢79) + R (Gyp + 3 Oe'©)
u u
3 2 .
V(Qlo + Z Qﬁ@m @) = —5_—(0'10 + ZO’ﬁ@m @) +
7 0 i
2 ) p
+%(O’10 + Z Jﬁe"’ G)V(O'l[] + Z O'ﬁemle) +
0 u u
+27G Y o; | :7 eimo _ AV (Qio + Y Qﬁelﬁé) +
u u
3V a a ii-© ii-@
0—0( 10+Z 7€ )(010+Z:0ﬁ6 )
7 7



A4

2 .7 7.0 .7 2.0
= —= Y ikoge O+ So10 Y ikoe T

n
2 2 2
= ——ikUﬁ + ——2010ik0n + 2 Z iklUn_ﬁrJﬁr
o) o 06 ‘7
17k = 3V —
127G o — AV G+ G +
" (R !
3V - 3V -
+—Q010 + — > _ Q077
(o) (o) 7
— — — C2
ROz + RZ(Qﬁ,ﬁf Zﬁl)Qﬁf = ——UikO'n + U_g Z ik og_po
7 7

Linear analysis

- v
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Rﬁﬁ = zEaﬁ + 2nG 17077 4Vﬁﬁ
v 7]
split Qﬁ in two components:
5 i il
Qi =z — +Qp —
T an
V :
O = —2E0'ﬁ inooSly,
2rG . Pn 1%
Qn” = (Z—R — ZO_ORQ)O'n 4EQ"”
. V
QﬁL = _4EQ7E

find eigenvalues:

(iw + 4K)[(zw + QK)(M + 4K) — oo (i

R R R oo R?

.y 271G

12 .3V \/_V_2 N n?c? B 2rGogn
R? R? R

and eigenvectors:

O'ﬁ (3) 0
Q) =10
o 1

Function w(**?(n) has maximum value at

mGoy R
Nmaz = 2 »
and it is
12 .3V n V2 12G2%03
mas = T T

(19)

(20)

(21)

(22)

(23)

(24)

(27)

(28)



A.5 Non-linear analysis

Tij o
Qﬁll =L Qﬁ” +N (33)
QﬁL un
s (o T g G
A\ =y i | L =7 | U
_ i (= i) L T=7,T)
N = L (Q"—"u TR = )
i Gra) . i)
% <Q”‘"n T S T )
+0
QO D 4 D) G S o o T
My |7 []47] o i, 117] o2 R2 &7 2= ]
. (ﬁ’:ﬁl) , (ﬁ’ 7ﬁJ_) . 62 . _‘,,_‘
(Q"n i + S, ﬁ*f1> iR L O 0 g, |
+0
ﬂ o (ﬁ_ﬁ,sﬁ) L o (ﬁ_ﬁr 577) _,
toor 2 \ S i + it ) O
3V I Ui/ 83700 o =T ) .
+00R Z”' <Q’7"7 7= |71 | T infm- ﬁ-ﬁ”il) T
search for solution in form
o o7 (1) s (2) o7 (3)
Qﬁu = wﬁ(t) Qﬁu + gﬁ(t) Qﬁ” + ¢ﬁ(t) Qﬁu (34)
U Qﬁi Qﬁl Qﬁi
o\ @ o \ @ 5\ @
5
wﬁ(t) Qﬁu + o QﬁH w(t) +§ﬁ(t) Qﬂ” +
Q7. Q. Q7
N | o\ N
+gt Qﬂ” 5(t) + ¢ﬁ(t) Qnu + % Qﬁu ¢(t) =
7L Q?ﬁ 7
o (1) o7 (2)
= iwWMyy(t) | QO +iw®Pg(t) | Qg +
7L Qﬁj_
o (3)
+iw®es(t) | Q + N
7n
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)23 in order that

we find orthonormal vectors (o7, Q7 , Q5

o (i) o (§#1)
(07: Qg g, ) Qg =1, (7, Sy Sy, ) 0 =0

L L

iw® 2% i
(o, g, Ly ) = <7700(w(1)¢f(2))’ (w(”w@))’O)
_ iw42Y% i 39
(Uﬁa Qﬁu ) Q i)(2) - <nao(w(2) u.l)%(l))’ (w(Q)—w(l))’U> ( )
(Oﬁa QﬁwQ J_)( ) = (0 0, 1)

We multiply equation (33) by orthonormal vectors (35) and get a set of
equation

a I m
77/} 77/}” QT]” ’ (0-7)797)“79 ) )77/}77-’_
nL
2)
o 0 (1)
+& gﬁ” ' (Jna QT)H I Q ) gﬁ + (N’ (UT)’ QT]“ I Q ) ) (36)
un
2)
o T a 0y )2,
§i = 1w & + ot QnH (o, Uk ) & +
nL
5 g (1) .
+§ gﬁ‘“ ’ (Un: Qn” ’ Q ) wﬁ + (N: (Oﬂa QUH ) Q ) ) (37)
L

(3)
S o %1
o = iw® ’7+(Qﬁ) (0, i, Q)P b+ (N (07, iy, 0 )P)(38)

O = _“7(70(1/}77 + fn)
Qﬁu 2?(77% + fn) + Z( wﬁ + W(Q)fﬁ)
Qp, = oy
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i(nog + noo) (iw™ + 2%) + inog (iw® + QVR VZ)
ndg(w(l) — w(Q))
_i(ﬁao + n6o) (iw) + 2%) + inog (iw® + 2VR V)
170 (@® — W)
() _ ;9% Vv
w i25 Vi
+770'U (w(l) — w(2)) Z { [2R (@bn—n + 577—77 )

U

&t

éﬁ - jw® 7

. ﬁ_ ﬁ’aﬁ ﬁ_ 7 777
+%MWWW+W®&W”(~ ﬂ)+%ﬁ(* t)}
77— 17 |7 — 7|
" 1 Vv
[—in'oo (Vg + &7)] + O —o® ; {Qﬁ (Y- + &imir)
. (77_ _V: _)’) (ﬁ_ _VJ_:ﬁ’)
‘H(W(l)@b“—*’ + WQ)f*—”) =t i
" ""] 7 =17 g -
V . (ﬁ’aﬁ) (ﬁvj_:ﬁ’)
9— (i + &) + i (WM s +wPE) | 222 + ¢ =
(o 0+ (Vg + )] (T o 2T
2
c
2R2 ( (1) w(Q)) n; [—i(n—n') oo (1/} -+ fn—n’)] (39)
—i’ - .
,17) i3V {[ \4
[ Zn 00( + 67] )] ‘—»| + RO'[] (w(l) _ w(?)) ; R
Y + € Oy +w @z )] i
(77 n ) ( n=n 7777)]|77_ﬁ,||77|
77_ ﬁl :77
tor g i + )
|7 — 17| 177]
From geometry
(ﬁ? _‘,:I:) = %nzmx ) (ﬁ’ T — _‘,:I:) = %77721111133 . (40)
(_"—1—777 - -)’—1— = _577310@ (77—777 - 77’—) = §nmax

2)

We count sums over 7, and 7_, insert w® and scalar products and get:

1 7rG00 (8V2c? — 3n*G?*03 R? + i8¢*RV'Y)

¢ = wetag— o &6
: 1 7Goy (8V?c? — 3n2G?02R? + i8c*RVY)
& = i, +ag, — 10 mo Jee (an)
: 1 7Goy (8V?c? — 3n2G?02R? + i8c*RVY)
& = i +ag - 170! s Jee:

33



where

V2e2 + 12G202 R?
Y= ¢ — o 0 (42)
and
—i260R2V Y — 26, R3¢?S2 — 0o R2V Y2 — oy R2V 2% N
« _
200R3622
ooRVVE + 0gV3¢e + 02601 G2 R

+ 200R3c2Y (43)
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