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IntrodutionThe purpose of this work is to inlude the non-linear terms to the analysisof the fragmentation of expanding HI shells. It is an extension of previouslinear analysis whih was performed by Elmegreen (1994). We use the simi-lar approah as Fuhs (1996) who desribed the fragmentation of uniformlyrotating self-gravitating diss.If some onditions are ful�lled, the HI shell may beome gravitationallyunstable and then it may break to fragments. Inlusion of higher order termsto the analysis an help us to determine with better auray the time whenthe shell is fragmented than the linear analysis.The thesis is divided in seven setions. In the �rst and the seond setionare HI shells introdued, in the third setion some models of the HI shells aredesribed, in the fourth setion are derived hydrodynamial equations for theold and thin shell, whih is expanding into the uniform ambient medium.In the �fth setion the linear analysis of the shell instability is presented.The riteria for the shell instability is the same as in (Elmegreen 1994), butit was derived by another formalism. In the seventh setion are nonlinearequations solved, and it is shown that the interation of the perturbationmodes of the shell surfae density ours, similar to the ase of the rotatingself-gravitating dis (Fuhs, 1996).In the appendix the omplete derivation of non-linear equations is given.
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1 General information1.1 What are HI shellsHI shells are strutures in the neutral hydrogen in galaxies. They are regions�lled by the hot gas of the low density surrounded by the dense thin shell.The sales of these shells are from 10 p to 1�2 kp. The typial density in theavity is 10�3 � 10�4 hydrogen atoms per m3, the typial surfae densityof the shell is 1020 � 1021 hydrogen atoms per m2. In the most ommononept HI shells are the result of the shok wave in the ISM reated by avery energeti explosion. For instane the shok wave after the SN explosionsweeps up the ambient medium and by this way it reates a avity �lled bythe hot gas surrounded by the old dense thin shell.1.2 Disovery of HI shells and supershellsFirst observations of HI shells in the Milky Way appear more than 40 yearsago (Menon, 1958). Later, many shells and supershells were disovered byHeiles (1979) in the Weaver and Williams (1973) HI survey of the Milky Way.HI shells were also observed in LMC, SMC and other nearby galaxies.1.3 Origin of HI shellsThe typial energy needed to reate a shell or supershell is 1051 � 1054 ergs.It means that single SN with the energy 1051 ergs an be responsible onlyfor the smallest strutures. Larger shells and supershells an be reated byan OB assoiation with 10 � 100 massive stars. These stars have short livetime and �nally explode as supernovae, so they an add with the stellarwind and SN explosions the energy to the avity. The most energeti shells(1053 � 1056ergs) may be formed by the group of several OB assoiations.Alternatively, HI shells an be formed by enounter of the galati HI planewith a high veloity loud or a dwarf galaxy. Reently, also explosions on-neted to GRB are onsidered.2 Why are HI shells interesting2.1 Propagating star formationDuring the expansion into the ambient medium, new mass is areted tothe shell while its expansion veloity and temperature are dereasing. Inthe typial density of the ambient medium 1 m�3 the swept up mass is5



between 104 � 107 M�. The shell may beome gravitationally unstable andfragment and form new moleular louds, in whih new stars may form. Bythis mehanism HI shells an propagate the star formation.2.2 Dis halo onnetionIn galaxies with thin gaseous diss, for instane in rapidly rotating spiralgalaxies, the shape of the shell is strongly a�eted by the z-distribution ofthe gas: ylindrial, z-elongated strutures alled worms may form. Theworm an break through the dis and even open to the galati halo. Theseones are alled blow-out shells and himneys.In ase of a blow-out shell, the hot gas from the shell interior enrihed bymetals made by stars esapes to the halo. It an be the way how to explainthe observed hot metal rih halo gas (Cox & Smith, 1974; MKee & Ostriker,1977).3 Models of HI shells3.1 Sedov solutionThe simplest model of the expanding shell was invented by Sedov (1959).The in�nitesimally thin shell approximation is onsidered in a solution ofequation of motion of a strong shok propagating into the ambient medium.The equation of motion has form:ddt(mV ) = S(Pint � Pext) ; (1)where m is the mass of the shell, V is expansion veloity, S is surfae of theshell and Pint and Pext are the pressures inside and outside of the shell. Inthe solution of Sedov (1959) the external pressure is negleted. In ase ofspherial symmetry and abrupt energy input have the solutions for radius ofthe shell R and expansion veloity V form:R � E1=50 � n�1=50 � t2=5V � E1=50 � n�1=50 � t�3=5 ; (2)where E0 is the input energy, n0 is density of the ambient medium and t is thetime sine the beginning of the expansion. In ase of ylindrial symmetrythe solutions have form: R � E1=40 � n�1=40 � t1=2V � E1=40 � n�1=40 � t�1=2 ; (3)6



and in ase of spherial symmetry and ontinuous energy input have thesolutions form: R � ( _NSN � ESN)1=5 � n�1=50 � t3=5V � ( _NSN � ESN)1=5 � n�1=50 � t�2=5 ; (4)where _NSN is the supernova rate and ESN is energy of one supernova.3.2 Chevalier's formulaThe relation whih enable us to estimate the energy of the observed shellwas obtained by Chevalier (1974) from one dimensional hydrodynamial sim-ulations. He used model of the spherially symmetri shell expanding intouniform medium. The external pressure and ooling were onsidered.His omputation is resulted in Chevalier's formula: E01050 erg! = 5:3 � 10�7 � n0m�3�1:12 � vkm s�1�1:4  Rp!3:12 : (5)3.3 Other omputer simulationsTwo dimensional omputer simulations with the thin shell approximationhave been performed by Ma Low & MCray (1988) and Ma Low et al.(1989) using the hydrodynamial ode ZEUS. The ambient medium strati�edin the diretion perpendiular to the galati plane was onsidered and thepossibility of the reation of blow-out shells was shown.Other omputer simulations in 2D using the thin shell approximationhave been performed by Tenorio-Tagle & Palou�s (1987). This approxima-tion is also alled 1+1/2 dimensional, whih inludes the galati di�erentialrotation.The 2+1/2 dimensional models (thin shell approximation in 3D) havebeen developed by Palou�s (1990, 1992), Silih (1996) and Ehlerov�a et. al(1997). Beyond the z-strati�ation of ambient medium and galati di�eren-tial rotation they inlude also ooling and evaporation of small preexistinginterstellar louds.4 Basi equationsWe onsider a old and thin shell of radius R in three-dimensional spae withhot interior expanding with veloity V into a uniform medium of density �0.The intrinsi surfae density of the shell � is omposed of unperturbed part7



Figure 1: The de�nition of the oordinates. On the shell surfae are usedangular oordinates ~� = ~x=R for the position and the angular veloity ~
 =~v=R for the surfae ows, where ~v is a normal 2D veloity.�0 plus the perturbation �1 (� = �0 + �1). Perturbation �1 results from theows on the surfae of the shell redistributing the aumulated mass. Weassume that �0 orresponds to R as �0 = �0R=3, whih means that all theenountered mass is aumulated to the shell. (It omes from 43�R3�0=4�R2).We an write the mass onservation law for a small area A = 4��R2 ofthe shell, where � is angular size of the area.�M�t +r �M~v = 0; (6)where M is total mass in the area, ~v denotes a two-dimensional veloity ofsurfae ows: ~x and ~v = _~x are two-dimensional vetors in the tangentialplane of the shell at the entral point of the area A. We onsider angularoordinates ~� = ~x=R and angular veloity ~
 = ~v=R to desribe the surfaeof the shell (see Fig. 1). With M = �A we obtain ontinuity equation in aform ���t + 2�VR + �Rr � ~
 +R~
 � r� = 0: (7)The equation of motion for the element of mass M and area A has form1A d(M~v)dt = �2r� � �r�; (8)where  is onstant isothermal sound speed, � is gravitational potential ofthe shell. Assuming M = 4��R3�0=3 and A = 4��R2 we an write it asR�~
�t +R2~
 � r~
 + V ~
 + 3V ~
�0� = �2� r� �r� (9)8



The gravitational potential � is related to the surfae density by thePoisson equation �� = 4�G�Æ(z); (10)where G is the onstant of gravitation and Æ(z) is a delta funtion of oordi-nate z perpendiular to the surfae of the shell.5 Perturbation analysisWe assume a small perturbation of the shell surfae density �1 � �0 whihevolves due to surfae ows given with veloity ~v. The related perturbationof gravitational potential �1 an be derived from the Poisson equation. Werewrite the equations (7), (9) and (10) in form��1�t + 2�1VR + �Rr � ~
 +R~
 � r�1 = 0; (11)R�~
�t +R2~
 � r~
 = � 2�0 (1� �1�0 )r�1 �r�1 � 4V ~
 + 3V ~
�1�0 ; (12)��1 = 4�G�1Æ(z); (13)where the 1=� in equation (9) was evaluated up to quadrati terms in �1.These equations may be Fourier transformed with respet to the spatialoordinates similar to Fuhs (1996)�1 = �10 +X~� �~�ei~��~�~
 = ~
0 +X~� ~
~�ei~��~� (14)where ~� denotes a dimensionless wavevetor ~� = ~kR. We assume no surfaemarosopi ow through the all onsidered area whih means ~
0 = 0. Fur-ther we assume �10 = 0 (mass aumulation due to expansion to the ambientmedium is inluded in �0). The Fourier transform of the equation (11) is_�~� + �0(i~� � ~
~�) + 2VR�~� +X~�0 (~
~��~�0 � i~�)�~�0 = 0 (15)where ~�0 + (~� � ~�0) = ~� was used. The Fourier transform of Euler's equation(12) is 9



R _~
~� +RX~�0 (~
~��~�0 � i~�0)~
~�0 = � 2�0 i~k�~� + 2�20 X~�0 ik0�~��~�0�~�0+2�G i~�j~�j�~� � 4V ~
~� + 3V�0 X~�0 ~
~��~�0�~�0 ; (16)where the following solution of Poisson equation was usedr�1 = �2�GX~� �~� i~�j~�jei~��~�: (17)6 Linear analysis6.1 The instability riteriaLinearized equations (15) and (16) have form_�~� + �0(i~� � ~
~�) + 2VR�~� = 0 (18)R _~
~� = � 2�0 i~k�~� + 2�G i~�j~�j�~� � 4V ~
~�: (19)Angular veloity ~
~� an be split in two omponents parallel and orthog-onal to the wavevetor ~� ~
~� = 
~�k ~�k�k + 
~�? ~�?�? : (20)We get the set of equations_�~� = �2VR�~� � i��0
~�k (21)_
~�k = (i2�GR � i 2��0R2 )�~� � 4VR
~�k (22)_
~�? = �4VR
~�? (23)To solve the set of equations (21) - (23) we assume a time dependene�~�; 
~�k ; 
~�? � ei!t : (24)10
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Figure 2: Left: The time dependene of the imaginary part of the !(2), whihan ause the instability. Right: The imaginary part of the same !(2) de-pending on the wavevetor � for three times. If the imaginary part of !(2)is negative, the shell is unstable. The Sedov solution was used with follow-ing parameters: total energy Etot = 1053erg, density of ambient mediumn0 = 1 m�3, average moleular weight � = 1:3, sound speed in the shell = 1 km � s�1.We get the eigenvalues!(1;2)~� = i3VR �s�V 2R2 + �22R2 � 2�G�0�R (25)!(3)~� = i4VR : (26)The !(1;2) in equation (25) are almost the same as in equation (6) inElmegreen (1994). The related eigenvetors are0B� �~�
~�k
~�? 1CA(1;2) = 0B� �i��0i!(1;2) + 2VR0 1CA (27)0B� �~�
~�k
~�? 1CA(3) = 0B� 0011CA : (28)The !~� are time dependent, so the assumption (24) is ful�lled only inthe short time interval, in whih !~�(t) hanges not too muh. But it anbe used as a riteria of the shell's instability by the following way. The !(3)~�has always meaning of the derease of perturbations. If !(1;2)~� have got a11



real part, solution is stable with dereasing osillations. If not, !(1)~� indiatesderease, !(2)~� an be imaginary negative and it have meaning of the growthof perturbations. The time evolution of the imaginary part of the !(2)~� isshown by �gure 2.The eigenvalues !~� depend also on the magnitude of the wavevetor ~� assuggested by �gure 2. The � with the maximum perturbation growth ratean be found. This was done by Elmegreen (1994).The maximum perturbation growth rate is:!(1;2)~�;max = i3VR �s�V 2R2 � �2G2�202 (29)and ours at the wavenumber:�max = �G�0R2 : (30)6.2 The time of the fragmentationIf the shell is unstable, i. e. the imaginary part of the !(2) is negative, forthe ertain time, the shell may break to fragments. In Ehlerov�a et al. (1997)the fragmentation integral is de�ned as:Ifrag(t) � Z ttb !(2)�;max(t0)dt0 ; (31)where tb is the time when the instability begins. The fragmentation time tf;l(the time when the shell is deomposed to fragments) is de�ned as the timewhen the fragmentation integral is equal to one:Ifrag(tf ; l) = Z tftb !(2)�;max(t0)dt0 = 1 : (32)7 Non-linear analysis7.1 The non-linear equationsWe rewrite the non-linear equations (15) and (16) in the form0B� _�~�_
~�k_
~�? 1CA = L0B� �~�
~�k
~�? 1CA+N ; (33)
12



where L is the linear part and N represents the non-linear terms. We searhfor a solution of equations (33) as a ombination of the eigenvetors obtainedfrom the previous linear analysis0B� �~�
~�k
~�? 1CA =  ~�(t)0B� �~�
~�k
~�? 1CA(1) + �~�(t)0B� �~�
~�k
~�? 1CA(2) + �~�(t)0B� �~�
~�k
~�? 1CA(3) ; (34)where  ~�(t), �~�(t) and �~�(t) are time dependent amplitudes of the eigenvetors.We �nd orthonormal vetors (�~�;
~�k ;
~�?)(1;2;3) in order that(�~�;
~�k;
~�?)(i) 0B� �~�
~�k
~�? 1CA(i) = 1; (�~�;
~�k;
~�?)(i) 0B� �~�
~�k
~�? 1CA(j 6=i) = 0 ;where i = 1; 2; 3. The orthonormal vetors are(�~�;
~�k ;
~�?)(1) = � i!(2)+2VR��0(!(1)�!(2)) ; i(!(1)�!(2)) ; 0�(�~�;
~�k ;
~�?)(2) = � i!(1)+2VR��0(!(2)�!(1)) ; i(!(2)�!(1)) ; 0�(�~�;
~�k ;
~�?)(3) = (0; 0; 1) : (35)We insert ansatz (34) into equation (33), multiply it by the orthonormalvetors (35) and obtain a set of equations for amplitudes  ~�(t), �~�(t) and �~�(t)_ ~� = i!(1) ~� + ��t0B� �~�
~�k
~�? 1CA(1) � (�~�;
~�k ;
~�?)(1) ~� ++ ��t0B� �~�
~�k
~�? 1CA(2) � (�~�;
~�k;
~�?)(1)�~� + (N ; (�~�;
~�k ;
~�?)(1)) (36)
_�~� = i!(2)�~� + ��t0B� �~�
~�k
~�? 1CA(2) � (�~�;
~�k ;
~�?)(2)�~� ++ ��t0B� �~�
~�k
~�? 1CA(1) � (�~�;
~�k ;
~�?)(2) ~� + (N ; (�~�;
~�k ;
~�?)(2)) (37)13



_�~� = i!(3)�~�+ ��t0B� �~�
~�k
~�? 1CA(3) � (�~�;
~�k ;
~�?)(3)�~�+(N ; (�~�;
~�k ;
~�?)(3)) (38)The most interesting is equation (37), beause it has !(2) in the �rst linearterm, and only the !(2) an be imaginary negative, whih has meaning ofinstability. Equations (36) and (38) have in the �rst linear term \stable" !(1)and !(3). The seond linear term (with time derivatives) and the nonlinearterms are too small against the �rst linear term. The solutions of equations(36) and (38) have dereasing or osilating harater.Using (34) we get an expliit form of the equation (37)_�~� = i!(2)�~� � i( _��0 + � _�0)(i!(1) + 2VR ) + i��0(i _!(2) + 2 _V R�V 2R2 )��0(!(1) � !(2)) �~�� i( _��0 + � _�0)(i!(1) + 2VR ) + i��0(i _!(2) + 2 _V R�V 2R2 )��0(!(2) � !(2))  ~�+ !(1) � i2VR��0 (!(1) � !(2))X~�0 ��2VR ( ~��~�0 + �~��~�0)+i �!(1) ~��~�0 + !(2)�~��~�0�i (~� � ~�0; ~�)j~� � ~�0j + �~��~�0 (~� � ~�0?; ~�)j~� � ~�0?j )[�i�0�0 ( ~�0 + �~�0)℄ + 1!(1) � !(2) X~�0 ��2VR ( ~��~�0 + �~��~�0)+i(!(1) ~��~�0 + !(2)�~��~�0)i (~� � ~�0; ~�0)j~� � ~�0j + �~��~�0 (~� � ~�0?; ~�0)j~� � ~�0?j )(�2VR ( ~�0 + �~�0) + i �!(1) ~�0 + !(2)�~�0�� (~�0; ~�)j~�0j j~�j + �~�0 (~�0?; ~�0)j~�0?j j~�j)� 2�20R2 (!(1) � !(2))X~�0 [�i (� � �0) �0 ( ~��~�0 + �~��~�0)℄[�i�0�0( ~�0 + �~�0)℄ (~�0; ~�)j~�j + i3VR�0 (!(1) � !(2))X~�0 ��2VR( ~��~�0 + �~��~�0) + i(!(1) ~��~�0 + !(2)�~��~�0)i (~� � ~�0; ~�)j~� � ~�0j j~�j+�~��~�0 (~� � ~�0?; ~�)j~� � ~�0?j j~�j) [�i�0�0(�~�0 + �~�0)℄ (39)14



Figure 3: Left: If � = �0 = j~� � ~�0j = �max, the wavevetors build an equi-lateral triangle. Right: The mode ~� interats with two modes inlined at anangle 60o to the wavevetor ~�.7.2 The interation of modesIn analogy to Fuhs (1996) we group together omponents with fully imaginar!~� into wavepakets and take the wavenumber �max. Other omponents aregrouped to the wavepakets of the same width and approximated by theaverage wavenumbers. The �~�max modes grow, the  ~�max and the �~�max modesdesend. Other modes osillate with derease. The desending modes oupleto the �~�max through non-linear terms, they lead to the third order terms,and they may be negleted against terms of seond order in �~�max .If we demand � = �0 = j~� � ~�0j = �max we obtain from geometry (see �g.3) (~�; ~�0�) = 12�2max (~�; ~� � ~�0�) = 12�2max(~�0+; ~� � ~�0+) = �12�2max (~�0�; ~� � ~�0�) = �12�2max ; (40)where ~�0+ and ~�0� are two wavevetors inlined at angles 60o to the waveve-tor ~�. It means that �~� wavepakets non-linearly interat with others withwavevetors ~�0�. Using equation (25) and geometrial onsiderations (40),the set of equations (39) an be simpli�ed to the form_� = i!(2)� + �� � 14 �G�0 (8V 22 � 3�2G2�20R2 + i82RV �)R4� �+��_�+ = i!(2)�+ + ��+ � 14 �G�0 (8V 22 � 3�2G2�20R2 + i82RV �)R4� ����_�� = i!(2)�� + ��� � 14 �G�0 (8V 22 � 3�2G2�20R2 + i82RV �)R4� ���+ ;(41)15
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Figure 5: The evolution of the maximum perturbation of the surfae densityin the ase of solution presented in �gure (4).Initial onditions are hosen randomly with the gaussian dispersion. Ithas meaning of initial perturbations of the surfae density and the veloity.The magnitude of these perturbations in physial values an be omputedfrom the eigenvetors (27).The solution is determined by paramaters of two types. The �rst onesare onstant values (as speed of sound  in the shell) whih an be hosenwithout any problems. The seond ones are funtions of the time (the radiusof the shell R(t), the expansion veloity V (t) and the surfae density �0(t)).We an obtain them from the Sedov solution (2) or (4) or from the omputersimulation of the shell.We use the Runge-Kutta of the fourth order with variable step for thenumerial integration. The typial solution is presented in �gure 4. Figure(5) shows the appropriate evolution of the maximum perturbation of thesurfae density.With this solution, eigenvetors (27) and equation (16) written for modes(~�; ~�+; ~��) only, we an get the surfae density and the veloity �eld in apart of the shell. It was done and the result is shown by �gures (7) and (8).These �gures show the one triplet of the interating modes.In reality, there an be more triplets of the interating modes. Figures(9) and (10) show the similar situation, but two triplets of the interatingmodes inlined at angle 30o were ombined.17
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Figure 6: Dependene of the fragmentation time on initial perturbation of thesurfae density.7.4 The time of fragmentation in the nonlinear theoryThe evolution of the maximum perturbation of the surfae density an beused to determine the fragmentation time of the shell. Beause at advanedstages of the fragmentation the value of the maximum perturbation risessteeply with the time (see �gure 5), we an de�ne it as the time, whenmaximum perturbation of the surfae density is equal to unperturbed value(�1(tf;nl) = �0(tf;nl)).The fragmentation time tf;nl de�ned by that way depends on initial ondi-tions of the set of equations (41). They orrespond to the initial perturbationof the surfae density. We an set them to the value typial for the inho-mogenities in the lumpy interstellar medium (1019 � 1020 m�2).In �gure (6) we show the dependene of the fragmentation time obtainedfrom the solution of the non-linear equations on the value of the initial per-turbation. This time may be ompared to the fragmentation time obtainedfrom the linear analysis de�ned as a time when Ifrag = 1.
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ConlusionsAn interation of modes ours on the shell surfae. It is the interation ofthree modes whih are inlined at the angle 60o and is of the type disussedin Fuhs (1996).Fragments form a few of tenth Myr after time when an instability begins.Time when fragments form depends on initial onditions. If the initialperturbation of surfae density is of the order � 1019 � 1020 m�2, whihis a typial value of inhomogenities in the ISM, the fragmentation time isapproximately of the same value as the time when the fragmentation integralIfrag = R ttb !(t0)dt0 (whih was de�ned in Ehlerov�a et al., 1997, tb is time whenthe instability begins) is equal to 1.Aknowledgment: We would like to thank Burkhard Fuhs. This workwas inspired by his paper on the fragmentation of uniformly rotating diss(Fuhs, 1996). We are also greatful for an enlighting disussion in Heidelbergin Marh 2000.
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Figure 7: The density evolution on the shell surfae. One triplet of interatingmodes is onsidered. 20



Figure 8: The evolution of the veloity �eld on the shell surfae. One tripletof interating modes is onsidered. 21



Figure 9: The density evolution on the shell surfae. Two triplets of inter-ating modes are onsidered. 22



Figure 10: The evolution of the veloity �eld on the shell surfae. Two tripletsof interating modes are onsidered. 23
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A DerivationA.1 Basi equationsR, V , �0, � = �0 + �1�0 = �0R=3 (= 43�R3�0=4�R2).Continuity equation �M�t +r �M~v = 0; (6)~� = ~x=R, ~
 = ~v=RM = �A, A = 4��R2���t A+ ��A�t + A�r �R~
 +R~
 � r�A = 0 =A���t + 2�VR + �Rr � ~
 +R~
 � r� = 0: (7)Equation of motion1A d(M~v)dt = �2r� � �r�; (8)M = 4��R3�0=3, A = 4��R2dMdt = 3 � 4��R2�0Vd~vdt = V ~
 +R�~
�tR�~
�t +R2~
 � r~
 + V ~
 + 3V ~
�0� = �2� r� �r� (9)Poisson equation �� = 4�G�Æ(z); (10)
25



A.2 Perturbation analysisContinuity equation���t + 2�VR + �Rr � ~
 +R~
 � r� = 0:����0�t + 2�0VR = 0���1�t + 2�1VR + �Rr � ~
 +R~
 � r�1 = 0; (11)Equation of motionR�~
�t +R2~
 � r~
 + V ~
 + 3V ~
�0� = �2� r� �r�r� = r�1R�~
�t +R2~
 � r~
 + V ~
 + 3V ~
(1� �1�0 ) = � 2�20 (1� �1�0 )r�1 �r���0 = r�0�R�~
�t +R2~
 � r~
 = � 2�0 (1� �1�0 )r�1 �r�1 � 4V ~
 + 3V ~
�1�0 ; (12)Poisson equation �� = 4�G�Æ(z);����0 = 4�G�0Æ(z)���1 = 4�G�1Æ(z); (13)
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A.3 Fourier transformation�1 = �10 +X~� �~�ei~��~�~
 = ~
0 +X~� ~
~�ei~��~� (14)~� = ~kR.We assume ~
0 = 0, �10 = 0~�0 + (~� � ~�0) = ~�Continuity equation_�10 +X~� _�~�ei~��~� + 2VR (�10 +X~� _�~�ei~��~�) ++�0Rr � (~
10 +X~� ~
~�ei~��~�) ++R(�10 +X~� _�~�ei~��~�)r � (~
10 +X~� ~
~�ei~��~�) ++R(~
10 +X~� ~
~�ei~��~�) � r(�10 +X~� _�~�ei~��~�)� = 0 : _�10 + 2VR�10 +RX~� (~
~� � (�i~k))��~� +RX~� �~�((�i~k) � ~
�~�) = 0� 6= 0 : P~� _�~�ei~��~� + 2VR P~� _�~�ei~��~� + �0Rr � (P~� ~
~�ei~��~�) ++R�10r � (P~� ei~��~�) +R~
10 � r(P~� _�~�ei~��~�) ++R(P~�0 _�~�0ei~�0�~�)r � (P~��~�0 ~
~��~�0ei(~��~�0)�~�) ++R(P~��~�0 ~
~��~�0ei(~��~�0)�~�) � r(P~�0 _�~�0ei~�0�~�)� 6= 0 : _�~� + 2VR�~� + �0(i~� � ~
~�) + �~�(~
10 � i~�)+�0(i~� � ~
~�) +X~�0 (~
~��~�0 � i~�)�~�0_�~� + �0(i~� � ~
~�) + 2VR�~� +X~�0 (~
~��~�0 � i~�)�~�0 = 0 (15)27



Poisson equation ��1 = 4�G�1Æ(z);We need: z 6= 0 : : : ��1 = 0z = 0 : : : �1 =X~k �1~�ei~k�~r =X~� �1~�ei~��~�ansatz: �1 = P~k �1~�ei~k�~r�j~kjzwe integrate from z = �� to z = +�, � ! 0lim�!0 Z ��� �2�1�z2 dz = 4�G�1 Z ��� Æ(z)dzlim�!0 ��1�z j���= 4�G�1�X~k 2~k�~�ei~k�~r = 4�GX~k �~�ei~k�~r�1~� = �2�G�~�j~kj�1 = �2�GX~k �~�j~kjei~k�~rr�1 = �2�GX~k �~� i~kj~kjei~k�~r = �2�GX~� �~� i~�j~�jei~��~� (17)Euler's equationR( _~
10 +X~� _~
~�ei~��~�) +R2(~
10 +X~� ~
~�ei~��~�) �r(~
10 +X~� ~
~�ei~��~�) = � 2�0 (�10 +X~� �~�ei~��~�) ++ 2�20 (�10 +X~� �~�ei~��~�)r(�10 +X~� �~�ei~��~�) ++2�GX~� �~� i~�j~�jei~��~� � 4V (~
10 +X~� ~
~�ei~��~�) ++3V�0 (~
10 +X~� ~
~�ei~��~�)(�10 +X~� �~�ei~��~�)28



� = 0 : R _~
10 +R2P~�(~
~� � (�i~k))~
�~� =2�20 P~� �~�(�i~k)��~� � 4V ~
10 +3V�0 ~
10�10 + 3V�0 P~� ~
~���~�� 6= 0 : RP~� _~
~�ei~��~� +R2P~�(~
10 � i~k)~
~�ei~��~� ++R2P~��~�0 P~�0(~
~��~�0 � i~k)~
~�0ei(~��~�0)�~�ei~�0�~� == � 2�0 P~� i~k�~�ei~��~� + 2�20 �10P~� i~k�~�ei~��~� ++ 2�20 P~��~�0 �~��~�0ei(~��~�0)�~�P~�0 i~k0�~�0ei~�0�~� ++2�GP~� �~� i~�j~�jei~��~� � 4V P~� ~
~�ei~��~� ++3V�0 ~
10P~� �~�ei~��~� + 3V�0 �10P~� ~
~�ei~��~� ++3V�0 P~��~�0 ~
~��~�0ei(~��~�0)�~�P~�0 �~�0ei~�0�~�R _~
~� +R(~
10 � i~�)~
~� +RX~�0 (~
~��~�0 � i~�0)~
~�0 == � 2�0 i~k�~� +� 2�20 �10i~k�~� + 2�20 X~�0 ik0�~��~�0�~�0+2�G i~�j~�j�~� � 4V ~
~� + 3V�0 ~
10�~� ++3V�0 ~
~��10 + 3V�0 X~�0 ~
~��~�0�~�0 :R _~
~� +RX~�0 (~
~��~�0 � i~�0)~
~�0 = � 2�0 i~k�~� + 2�20 X~�0 ik0�~��~�0�~�0+2�G i~�j~�j�~� � 4V ~
~� + 3V�0 X~�0 ~
~��~�0�~�0 : (16)A.4 Linear analysis_�~� + �0(i~� � ~
~�) + 2VR�~� = 0 (18)29



R _~
~� = � 2�0 i~k�~� + 2�G i~�j~�j�~� � 4V ~
~� (19)split ~
~� in two omponents:~
~� = 
~�k ~�k�k + 
~�? ~�?�? (20)_�~� = �2VR�~� � i��0
~�k (21)_
~�k = (i2�GR � i 2��0R2 )�~� � 4VR
~�k (22)_
~�? = �4VR
~�? (23)�~�; 
~� � ei!t (24)�nd eigenvalues:(i! + 4VR )[(i! + 2VR )(i! + 4VR )� i��0(i 2��0R2 � i2�GR )℄ = 0!(1;2)~� = i3VR �s�V 2R2 + �22R2 � 2�G�0�R (25)!(3)~� = i4VR (26)and eigenvetors: 0B� �~�
~�k
~�? 1CA(1;2) = 0B� �i��0i!(1;2) + 2VR0 1CA (27)0B� �~�
~�k
~�? 1CA(3) = 0B� 0011CA (28)Funtion !(1;2)(�) has maximum value at�max = �G�0R2 ; (29)and it is !(1;2)~�;max = i3VR �s�V 2R2 � �2G2�202 : (30)30



A.5 Non-linear analysis0B� _�~�_
~�k_
~�? 1CA = L0B� �~�
~�k
~�? 1CA+N (33)
N = 0BBBBBB� �iP~�0 �
~��~�0k (~��~�0;~�)j~��~�0j + 
~��~�0? (~��~�0?;~�)j~��~�0?j � �~�0�iP~�0 �
~��~�0k (~��~�0;~�0)j~��~�0j + 
~��~�0? (~��~�0?;~�0)j~��~�0?j ��iP~�0 �
~��~�0k (~��~�0;~�0)j~��~�0j + 
~��~�0? (~��~�0?;~�0)j~��~�0?j �+0�
~�0k (~�0 ;~�)j~�0jj~�j + 
~�0? (~�0?;~�)j~�0?jj~�j�+ i 2�20R2 P~�0 �~�0�~��~�0 ~�0;~�j~�j�
~�0k (~�0;~�?)j~�0jj~�?j + 
~�0? (~�0?;~�?)j~�0?jj~�?j�+ i 2�20R2 P~�0 �~�0�~��~�0 ~�0;~�?j~�?j+0+ 3V�0R P~�0 �
~�0�~�k (~��~�0;~�)j~��~�0jj~�j + 
~�0�~�? (~��~�0?;~�)j~��~�0?jj~�j� �~�0+ 3V�0R P~�0 �
~�0�~�k (~��~�0;~�?)j~��~�0jj~�?j + 
~�0�~�? (~��~�0?;~�?)j~��~�0?jj~�?j� �~�0 1CCCCAsearh for solution in form0B� �~�
~�k
~�? 1CA =  ~�(t)0B� �~�
~�k
~�? 1CA(1) + �~�(t)0B� �~�
~�k
~�? 1CA(2) + �~�(t)0B� �~�
~�k
~�? 1CA(3) (34)
_ ~�(t)0B� �~�
~�k
~�? 1CA(1) + ��t0B� �~�
~�k
~�? 1CA(1) (t) + _�~�(t)0B� �~�
~�k
~�? 1CA(2) ++ ��t0B� �~�
~�k
~�? 1CA(2)�(t) + _�~�(t)0B� �~�
~�k
~�? 1CA(3) + ��t0B� �~�
~�k
~�? 1CA(3)�(t) == i!(1) ~�(t)0B� �~�
~�k
~�? 1CA(1) + i!(2)�~�(t)0B� �~�
~�k
~�? 1CA(2) ++i!(3)�~�(t)0B� �~�
~�k
~�? 1CA(3) +N31



we �nd orthonormal vetors (�~�;
~�k ;
~�?)(1;2;3) in order that(�~�;
~�k ;
~�?)(i) 0B� �~�
~�k
~�? 1CA(i) = 1; (�~�;
~�k ;
~�?)(i) 0B� �~�
~�k
~�? 1CA(j 6=i) = 0(�~�;
~�k ;
~�?)(1) = � i!(2)+2VR��0(!(1)�!(2)) ; i(!(1)�!(2)) ; 0�(�~�;
~�k ;
~�?)(2) = � i!(1)+2VR��0(!(2)�!(1)) ; i(!(2)�!(1)) ; 0�(�~�;
~�k ;
~�?)(3) = (0; 0; 1) (35)We multiply equation (33) by orthonormal vetors (35) and get a set ofequation _ ~� = i!(1) ~� + ��t0B� �~�
~�k
~�? 1CA(1) � (�~�;
~�k ;
~�?)(1) ~� ++ ��t0B� �~�
~�k
~�? 1CA(2) � (�~�;
~�k;
~�?)(1)�~� + (N ; (�~�;
~�k ;
~�?)(1)) (36)
_�~� = i!(2)�~� + ��t0B� �~�
~�k
~�? 1CA(2) � (�~�;
~�k ;
~�?)(2)�~� ++ ��t0B� �~�
~�k
~�? 1CA(1) � (�~�;
~�k ;
~�?)(2) ~� + (N ; (�~�;
~�k ;
~�?)(2)) (37)

_�~� = i!(3)�~�+ ��t0B� �~�
~�k
~�? 1CA(3) � (�~�;
~�k ;
~�?)(3)�~�+(N ; (�~�;
~�k ;
~�?)(3)) (38)�~� = �i��0( ~� + �~�)
~�k = 2VR ( ~� + �~�) + i(!(1) ~� + !(2)�~�)
~�? = �~� 32



_�~� = i!(2)�~� � i( _��0 + � _�0)(i!(1) + 2VR ) + i��0(i _!(2) + 2 _V R�V 2R2 )��0(!(1) � !(2)) �~�� i( _��0 + � _�0)(i!(1) + 2VR ) + i��0(i _!(2) + 2 _V R�V 2R2 )��0(!(2) � !(2))  ~�+ !(1) � i2VR��0 (!(1) � !(2))X~�0 ��2VR ( ~��~�0 + �~��~�0)+i �!(1) ~��~�0 + !(2)�~��~�0�i (~� � ~�0; ~�)j~� � ~�0j + �~��~�0 (~� � ~�0?; ~�)j~� � ~�0?j )[�i�0�0 ( ~�0 + �~�0)℄ + 1!(1) � !(2) X~�0 ��2VR ( ~��~�0 + �~��~�0)+i(!(1) ~��~�0 + !(2)�~��~�0)i (~� � ~�0; ~�0)j~� � ~�0j + �~��~�0 (~� � ~�0?; ~�0)j~� � ~�0?j )(�2VR ( ~�0 + �~�0) + i �!(1) ~�0 + !(2)�~�0�� (~�0; ~�)j~�0j j~�j + �~�0 (~�0?; ~�0)j~�0?j j~�j)� 2�20R2 (!(1) � !(2))X~�0 [�i (� � �0) �0 ( ~��~�0 + �~��~�0)℄ (39)[�i�0�0( ~�0 + �~�0)℄ (~�0; ~�)j~�j + i3VR�0 (!(1) � !(2))X~�0 ��2VR( ~��~�0 + �~��~�0) + i(!(1) ~��~�0 + !(2)�~��~�0)i (~� � ~�0; ~�)j~� � ~�0j j~�j+�~��~�0 (~� � ~�0?; ~�)j~� � ~�0?j j~�j) [�i�0�0(�~�0 + �~�0)℄From geometry:(~�; ~�0�) = 12�2max (~�; ~� � ~�0�) = 12�2max(~�0+; ~� � ~�0+) = �12�2max (~�0�; ~� � ~�0�) = �12�2max : (40)We ount sums over �+ and ��, insert !(2) and salar produts and get:_� = i!(2)� + �� � 14 �G�0 (8V 22 � 3�2G2�20R2 + i82RV �)R4� �+��_�+ = i!(2)�+ + ��+ � 14 �G�0 (8V 22 � 3�2G2�20R2 + i82RV �)R4� ���� (41)_�� = i!(2)�� + ��� � 14 �G�0 (8V 22 � 3�2G2�20R2 + i82RV �)R4� ���+ ;33



where � = s�V 22 + �2G2�20R2R22 (42)and � = �i2 _�0R2V 2�� 2 _�0R32�2 � �0R2V 2�2 � i�0R2 _V 2�2�0R32� ++�0RV _V 2 + �0V 32 + �20 _�0�2G2R32�0R32� (43)
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