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Abstract. A model of the thin shell expanding into a uniform ambient medium is developed. Density perturbations
are described using equations with linear and quadratic terms, and the linear and the nonlinear solutions are
compared. We follow the time evolution of the fragmentation process and separate the well defined fragments.
Their mass spectrum is compared to observations and we also estimate their formation time.
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1. Introduction

Hα emission, which is frequently observed along the pe-
riphery of giant expanding HI shells, is related to star for-
mation, which has been triggered due to the compression
of the ISM. As an example of correlated star formation,
the ring of young stars observed near to the Sun consisting
of Orion, Perseus, Sco-Cen and other OB associations can
be used (Lindblad et al. 1997). The HI hole No. 35 in the
dwarf galaxy IC 2574 (Walter & Brinks 1999) with the Hα

emission found along its rims serves as another example
of triggered star formation.

The analysis of the stability of a pressure-confined slab
performed by Elmegreen & Elmegreen (1978) has been ex-
tended to spherical expanding shocks by Vishniac (1983).
The time development of the gravitational collapse of lin-
ear perturbations in decelerating, isothermal shocked lay-
ers has been examined numerically and analytically by
Elmegreen (1989, 1994). The purely hydrodynamical non-
linear instability has been discussed by Vishniac (1994).
In this paper, we continue with nonlinear analysis of the
gravitational instability of spherically symmetric shells ex-
panding into stationary homogeneous medium.

We modify the approach adopted by Fuchs (1996) who
described the fragmentation of uniformly rotating self-
gravitating disks. If some conditions are fulfilled, the ex-
panding shell may become gravitationally unstable and
break to fragments. The inclusion of higher order terms
helps to determine with better accuracy than the linear
analysis when, where and how quickly it happens.

The Rayleigh-Taylor (R-T) instability is not expected
to develop in the situation explored because a spheri-
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cal shock expanding into the homogeneous interstellar
medium is always decelerated collecting stationary am-
bient medium. R-T instabilities may be important in dif-
ferent situations when the density of the ambient medium
drops down sufficiently quickly so that the shell can ac-
celerate mixing hot and cold gas components. This is the
case of very active SF regions where the shell interacts
with previously formed fragments. The region 30 Doradus
in LMC may serve as an example of R-T instability in
action as described by Redman et al. (1999).

For highly supersonic flows multiple shocks may de-
velop (Falle 1981), but at that time the shells are gravita-
tionally stable due to squeezing connected to the fast ex-
pansion. Later, when they decelerate to velocities less than
50 km s−1, the gravity starts to be important, while radia-
tive instabilities of the outer shock described by Strickland
& Blondin (1995) loose their influence.

This work may be extended to nonspherical oscilla-
tions using the formalism worked out by Bičák & Schmidt
(1999) for cosmological applications. Here we also ignore
the deviations from spherical symmetry resulting from ini-
tial asymmetry of the energy input. In a smooth medium
with only large scale density gradients the shell ap-
proaches quickly the spherical symmetry as demonstrated
by Bisnovatyi-Kogan & Blinnikov (1982). Nonradial per-
turbations resulting from inhomogeneities of the ambient
medium and variations of the shell surface density will be
discussed in a subsequent paper.

2. The expanding shell in a static, homogeneous
medium

The energy input from an OB association or other sources
creates a blast-wave propagating into the ambient medium
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(Ostriker & McKee 1988; Bisnovatyi-Kogan & Silich
1995). Since its radius is during the majority of the evo-
lution much larger than its thickness, the thin shell ap-
proximation can be used. The blast-wave is considered as
an expanding infinitesimally thin layer surrounding the
hot medium inside. The analytical solution of the expan-
sion in the thin shell approximation was derived by Sedov
(1959). In a static, homogeneous medium without the ex-
ternal or internal gravitational field, the blast-wave is al-
ways spherically symmetric, it sweeps the ambient matter
and decelerates. Its evolution is given by the equation of
motion

d
dt

(MV ) = S(Pint − Pext), (1)

the equation of mass conservation

d
dt
M = Sρ0V, (2)

and the equation of state

Pint =
2
3
Eth

Vol
, (3)

where M and V are the total mass collected in the shell
and its expansion velocity, S is the shell surface, Pint and
Pext are pressures inside and outside of the shell, ρ0 is the
density of the ambient medium and Eth and Vol are the
thermal energy and volume inside of the shell. Neglecting
the external pressure and keeping the Eth = const., and
assuming Eth = 3

5Etot, where Etot is the total input en-
ergy from the source, the radius of the shell R grows with
time as(
R

pc

)
= 72.2

(
Etot

1051erg

)1/5

(
ρ0

1cm−3

)−1/5 (
t

Myr

)2/5

, (4)

it decelerates as(
V

km s−1

)
= 28.2

(
Etot

1051erg

)1/5

(
ρ0

1cm−3

)−1/5 (
t

Myr

)−3/5

, (5)

and its unperturbed surface density Σ0 grows with time as(
Σ0

M� pc−2

)
= 0.57

(
Etot

1051erg

)1/5

(
ρ0

1cm−3

)4/5 (
t

Myr

)2/5

. (6)

The linear analysis of the gravitational instability of ex-
panding shells by Elmegreen (1994) gives for the instan-
taneous maximum growth rate ωBGE of a transversal per-
turbation of a shell

ωBGE = −3V
R

+

[
V 2

R2
+
(
πGΣ0

c

)2
]1/2

, (7)

where c is the sound speed within the shell. The instability
occurs for ωBGE > 0. Inserting Eqs. (4–6) into Eq. (7), we
may derive the time tb when the instability occurs for the
first time. ωBGE(tb) = 0 for(

tb
Myr

)
= 28.8

(
c

km s−1

)5/7

(
Etot

1051erg

)−1/7 (
ρ0

1cm−3

)−4/7

. (8)

The ratio of the wavelength λ of the fastest perturbation
to R

λ/R =
2c2

GRΣ0
(9)

is at t ≥ tb less than πc√
2V

. The sound speed c in the dense
and cold shell is always smaller than the speed of sound in
the ambient medium, which is smaller than the expansion
speed of the shell V . Therefore, λ/R << 1.

In a subsequent paper, we shall also discuss the insta-
bility in non-spherical shells: the values of R, V, and Σ0

will be taken from numerical simulations.

3. Hydrodynamical and Poisson equations
on the surface of the shell

We consider the cold and thin shell of radius R surround-
ing the hot interior and expanding with velocity V into a
uniform medium of density ρ0. The intrinsic surface den-
sity of the shell Σ is composed of unperturbed part Σ0

plus the perturbation Σ1 (Σ = Σ0 + Σ1). Perturbation
Σ1 results from the flows on the surface of the shell redis-
tributing the accumulated mass. We assume that Σ0 cor-
responds to R as Σ0 = ρ0R/3, which means that all the
encountered mass is accumulated to the shell. (It comes
from Σ0 = 4

3πR
3ρ0/4πR2.)

The mass conservation law in a small area on the sur-
face of the shell is
∂m

∂t
+ (∇,mv) = A V ρ0, (10)

where m is mass in the area A = 4παR2, α is a fixed
small fraction of the sphere. v denotes a two-dimensional
velocity of surface flows connected to perturbations above
the stretching of the area due to expansion of the unper-
turbed shell: r and v = ṙ are two-dimensional vectors
in the tangential plane of the shell at the central point
of the considered area. We consider angular coordinates
Θ = r/R and angular velocity Ω = v/R to describe the
evolution on the surface of the shell (see Fig. 1).

With Σ = m/A we obtain continuity equation in a
form
∂Σ
∂t

+ 2Σ
V

R
+ ΣR (∇,Ω) +R (Ω,∇) Σ = V ρ0. (11)

The equation of motion for flows on the shell surface has
a form

1
A

d(mv)
dt

= −c2∇Σ− Σ∇Φ, (12)
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Fig. 1. The coordinates on the shell surface: Θ = r/R for the
position and the angular velocity Ω = v/R for the surface
flows.

where c is the constant isothermal sound speed inside the
cold shell, Φ is the gravitational potential generated by
the mass distribution given in the tangential plane to the
shell. The shell is confined by the pressure of the bubble
interior and the outer shock. We assume that the pres-
sure distribution through the shell corresponds to constant
isothermal sound speed c and constant volume density in-
side of the shell with a slight deviations close to its inner
edge, which is in contact with the hot interior. Using the
continuity Eq. (11), we can rewrite the Eq. (12) as

R
∂Ω
∂t

+ VΩ + 3VΩ
Σ0

Σ
+R2 (Ω,∇) Ω−R2Ω (∇,Ω)

= −c
2

Σ
∇Σ−∇Φ. (13)

The gravitational potential Φ is related to the surface den-
sity by the Poisson equation

∆Φ = 4πGΣδ(z) , (14)

where G is the constant of gravitation and δ(z) is a delta
function of the space coordinate z perpendicular to the
surface of the shell.

4. Perturbation analysis

We assume a small perturbation of the shell surface den-
sity Σ1 � Σ0 which evolves due to surface flows given with
velocity v. The perturbed hydrodynamical Eqs. (11), (13)
and the perturbed Poisson Eq. (14) have form

∂Σ1

∂t
+ 2Σ1

V

R
+ ΣR (∇,Ω) +R (Ω,∇) Σ1 = 0, (15)

R
∂Ω
∂t

+R2 (Ω,∇) Ω−R2Ω (∇,Ω)

= − c
2

Σ0
(1− Σ1

Σ0
)∇Σ1 −∇Φ1 − 4VΩ + 3VΩ

Σ1

Σ0
, (16)

∆Φ1 = 4πGΣ1δ(z), (17)

where the 1/Σ in Eq. (13) was evaluated up to quadratic
terms in Σ1: c2

Σ∇Σ = c2

Σ0
(1 − Σ1

Σ0
+ higher order terms)

∇Σ1, and ∇Σ0 = 0 on the shell surface.
The perturbation of the surface density Σ1 and the

angular velocity of the surface flows Ω can be written as

Σ1 = Σ10 +
∑
η

Σηei(η,Θ) ,

Ω = Ω0 +
∑
η

Ωηei(η,Θ) , (18)

which may be inserted to the perturbed Eqs. (15) and (16).
η denotes a dimensionless wave-vector η = kR. We as-
sume no surface macroscopic flow through all the con-
sidered area which means Ω0 = 0. Further we assume
Σ10 = 0 (mass accumulation due to expansion to the am-
bient medium is included in Σ0). The Fourier transform
of the Eq. (15) is

Σ̇η +Σ0 (−iη,Ω−η) + 2VRΣη +
∑
η′ (−iη′,Ω−η′) Ση−η′

+
∑
η′ (Ωη−η′ ,−iη′) Ση′ = 0 (19)

where we used the identity η′ + (η − η′) = η.
The solution of the Poisson Eq. (17)

∇Φ1 = −2πG
∑
η

Ση
iη

|η|e
i(η,Θ) (20)

can be inserted to the Fourier transform of the Eq. (16).
We get:

RΩ̇η +R
∑
η′

(Ωη−η′ ,−iη′) Ωη′ −R
∑
η′

Ωη−η′

(−iη′,Ω−η′) = − c2

RΣ0
iηΣη +

c2

RΣ2
0

∑
η′

iη′Ση−η′Ση′

+2πG
iη

|η|Ση − 4VΩη +
3V
Σ0

∑
η′

Ωη′Ση−η′ . (21)

5. Linear analysis

We give the solution of Eqs. (19) and (21) using the linear
terms only. This linear solution will be later compared to
the results obtained with the nonlinear terms. The com-
plete linear analysis of the expanding shell was also done
by Elmegreen (1994).

Linearized Eqs. (19) and (21) have a form

Σ̇η + Σ0 (−iη,Ω−η) + 2
V

R
Ση = 0 (22)

RΩ̇η = − c
2

Σ0
ikΣη + 2πG

iη

|η|Ση − 4VΩη. (23)

Angular velocity Ωη can be split in two components par-
allel and orthogonal to the wave-vector η

Ωη = Ωη‖
η

|η| + Ωη⊥
η⊥
|η⊥|

, (24)

where η⊥ is a vector in the tangential plane, which is
perpendicular to the wave-vector η and |η⊥| = |η|.
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We get the set of equations

Σ̇η = −2
V

R
Ση − iηΣ0Ωη‖ (25)

Ω̇η‖ = (i
2πG
R
− i c

2η

Σ0R2
)Ση − 4

V

R
Ωη‖ (26)

Ω̇η⊥ = −4
V

R
Ωη⊥ (27)

which can be formally written as Σ̇η
Ω̇η‖
Ω̇η⊥

 = L

 Ση
Ωη‖
Ωη⊥

 . (28)

We find the eigenvalues and eigenvectors of the linear op-
erator L.

ω(1,2)
η = i

3V
R
±
√
−V

2

R2
+
η2c2

R2
− 2πGΣ0η

R
(29)

ω(3)
η = i4

V

R
, (30)

where η is the magnitude of η.
The related eigenvectors are Ση

Ωη‖
Ωη⊥

(1,2)

=

 ηΣ0

i2VR − ω
(1,2)
η

0

 (31)

 Ση
Ωη‖
Ωη⊥

(3)

=

 0
0
1

 . (32)

The eigenvalues ωη are time dependent and can be used
to obtain a criteria for the instability of the shell. For a
short time for which the change of the linear operator L
is small (and we can always find the time interval which
is short enough), the solution of Eqs. (28) is a part of the
exponential function ∼eiωt. The ω(3)

η has always meaning
of the decrease of perturbations. If ω(1,2)

η have got a real
part, solution is stable with decreasing oscillations. If not,
ω

(1)
η indicates decrease, ω(2)

η can be imaginary negative
and it have meaning of the perturbations growth rate.
The time evolution of the imaginary part of the ω(2)

η is
shown by Fig. 2.

Since the eigenvalues ω(1,2)
η depend on η through the

relation (29), the maximum perturbation growth rate
ω

(1,2)
η,max can be found:

ω(1,2)
η,max = i

3V
R
±
√
−V

2

R2
− π2G2Σ2

0

c2
(33)

and occurs at the wavenumber:

ηmax =
πGΣ0R

c2
· (34)

ω
(2)
η,max is close to ωBGE derived by Elmegreen (1994), ac-

tually ω
(2)
η,max = −iωBGE. If the shell is unstable, i.e. the
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Fig. 2. The time dependence of the imaginary part of the ω(2),
which can cause the instability. The Sedov solution was used
with following parameters: total energy Etot = 1053 erg, den-
sity of ambient medium n0 = 1 cm−3, average molecular weight
µ = 1.3, sound speed in the shell c = 1 km s−1.

imaginary part of the ω(2)
η is negative, for the certain time,

the shell may break to fragments. In Ehlerová et al. (1997)
is the fragmentation integral for the maximum perturba-
tion growth rate defined as:

If(t) ≡
∫ t

tb

iω(2)
η,max(t′)dt′ , (35)

where tb is the time when the instability begins. We gen-
eralize it for any unstable mode with the wavenumber η
using an analogy to the value for ωBGE as

If,η(t) ≡
∫ t

tb

iω(2)
η (t′)dt′. (36)

The fragmentation time tf,η (the time giving some devel-
opment level of a fragment) is defined as the time when
the fragmentation integral is equal to one:

If,η(tf,η) =
∫ tf,η

tb

iω(2)
η (t′)dt′ = 1 . (37)

6. Nonlinear analysis

The equations with nonlinear terms are solved by the sim-
ilar procedure as adopted by Fuchs (1996). We rewrite the
nonlinear Eqs. (19) and (21) in the form Σ̇η

Ω̇η‖
Ω̇η⊥

 = L

 Ση
Ωη‖
Ωη⊥

+N , (38)

where L is the linear part and N represents the non-linear
terms. We search for a solution of Eqs. (38) as a combina-
tion of the eigenvectors obtained from the previous linear
analysis Ση

Ωη‖
Ωη⊥

 = ψη(t)

 Ση
Ωη‖
Ωη⊥

(1)

+ξη(t)

 Ση
Ωη‖
Ωη⊥

(2)

+ φη(t)

 Ση
Ωη‖
Ωη⊥

(3)

, (39)
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where ψη(t), ξη(t) and φη(t) are time dependent amplitudes
of eigenvectors. There are always four solutions differing
in eigenvectors multiplied by ±i or ±1. We select only so-
lutions with physical relevance given by eigenvectors (31).
We find orthonormal vectors (Ση,Ωη‖ ,Ωη⊥)(1,2,3) in order
that

(Ση,Ωη‖ ,Ωη⊥)(j)

 Ση
Ωη‖
Ωη⊥

(j)

= 1

(Ση,Ωη‖ ,Ωη⊥)(j)

 Ση
Ωη‖
Ωη⊥

(k 6=j)

= 0, (40)

where j, k = 1, 2, 3. The orthonormal vectors are

(Ση,Ωη‖ ,Ωη⊥)(1) =
(

ω(2)−i2VR
ηΣ0(ω(2)−ω(1))

, 1
(ω(2)−ω(1))

, 0
)

(Ση,Ωη‖ ,Ωη⊥)(2) =
(

ω(1)−i2VR
ηΣ0(ω(1)−ω(2))

, 1
(ω(1)−ω(2))

, 0
)

(Ση,Ωη‖ ,Ωη⊥)(3) = (0, 0, 1)

. (41)

We insert ansatz (39) into Eq. (38), multiply it by the
orthonormal vectors (41) and obtain a set of equations for
amplitudes ψη(t), ξη(t) and φη(t)

ψ̇η = iω(1)ψη −

∂
∂t

 Ση
Ωη‖
Ωη⊥

(1)

,
(
Ση,Ωη‖ ,Ωη⊥

)(1)

ψη

−

 ∂

∂t

 Ση
Ωη‖
Ωη⊥

(2)

,
(
Ση,Ωη‖ ,Ωη⊥

)(1)

 ξη (42)

+
(
N ,
(
Ση,Ωη‖ ,Ωη⊥

)(1)
)

ξ̇η = iω(2)ξη −

 ∂

∂t

 Ση
Ωη‖
Ωη⊥

(2)

,
(
Ση,Ωη‖ ,Ωη⊥

)(2)

 ξη

−

 ∂

∂t

 Ση
Ωη‖
Ωη⊥

(1)

,
(
Ση,Ωη‖ ,Ωη⊥

)(2)

ψη (43)

+
(
N ,
(
Ση,Ωη‖ ,Ωη⊥

)(2)
)

φ̇η = iω(3)φη −

 ∂

∂t

 Ση
Ωη‖
Ωη⊥

(3)

,
(
Ση,Ωη‖ ,Ωη⊥

)(3)

φη

+
(
N ,
(
Ση,Ωη‖ ,Ωη⊥

)(3)
)
, (44)

where we denote ω(j) ≡ ω(j)
η,max.

Equation (44) is decoupled from the others and
its solution is the decrease of the initial value of φ.
Equations (42) and (43) are coupled through the linear
and nonlinear terms. The interaction through the linear
terms is weak, since the coupled linear terms have smaller
amplitudes compared to linear terms and they decrease

with time due to their dependence on the time derivatives
of the eigenvectors, which are very small in the later stages
of the shell evolution. The coupling through the nonlinear
terms leads to the terms of the third and higher orders,
which can be neglected with respect to quadratic terms.
Furthermore, the solution of the Eq. (42) has a decreasing
character, because the first term on the right side, which
includes the “stable” ω(1), dominates. Equation (43) is the
most interesting one, because it has ω(2) in the first lin-
ear term, and only the ω(2) can be imaginary negative,
which has meaning of instability. The explicit form of the
Eq. (43) is

ξ̇η = iω(2)ξη −
(|η̇|Σ0 + |η|Σ̇0)(ω(1) − i2VR ) + |η|Σ0

|η|Σ0(ω(1) − ω(2))

(i2 V̇ R−V
2

R2 − ω̇(2))
. . .

ξη −
ω(1) − i2VR

|η|Σ0

(
ω(1) − ω(2)

) ∑
η′

i|η − η′|Σ0 (ψη−η′ + ξη−η′)
[(
i2
V

R
− ω(1)

)
ψη′

+
(
i2
V

R
− ω(2)

)
ξη′

]
|η′| −

ω(1) − i2VR
|η|Σ0

(
ω(1) − ω(2)

)
∑
η′

i|η′|Σ0 (ψη′ + ξη′)
{[(

i2
V

R
− ω(1)

)
ψη−η′

+
(
i2
V

R
− ω(2)

)
ξη−η′

]
(η − η′,η′)
|η − η′| (45)

+φη−η′
(η − η′⊥,η′)
|η − η′⊥|

}
+

3V
RΣ0

(
ω(1) − ω(2)

) ∑
η′

|η − η′|Σ0 (ψη−η′ + ξη−η′)
{[(

i2
V

R
− ω(1)

)
ψη′

+
(
i2
V

R
− ω(2)

)
ξη′

]
(η′,η)
|η′||η| + φη′

(η′⊥,η)
|η′⊥||η|

}
+

− i(
ω(1) − ω(2)

) ∑
η′

{[(
i2
V

R
− ω(1)

)
ψη−η′

+
(
i2
V

R
− ω(2)

)
ξη−η′

]
(η − η′,η′)
|η − η′| + φη−η′

(η − η′⊥,η′)
|η − η′⊥|

}{[(
i2
V

R
− ω(1)

)
ψη′ +

(
i2
V

R
−

ω(2)
)
ξη′
] (η′,η)
|η′||η| + φη′

(η′⊥,η)
|η′⊥||η|

}
− i(

ω(1) − ω(2)
)

∑
η′

{[(
i2
V

R
− ω(1)

)
ψη−η′ +

(
i2
V

R
− ω(2)

)

ξη−η′ ]
(η − η′,η)
|η − η′||η| + φη−η′

(η − η′⊥,η)
|η − η′⊥||η|

}
{[(

i2
V

R
− ω(1)

)
ψη′ +

(
i2
V

R
− ω(2)

)
ξη′

]
|η′|

+φη′ |η′|}+
ic2

R2Σ2
0

(
ω(1) − ω(2)

) ∑
η′

|η − η′|Σ0

(ψη−η′ + ξη−η′) |η′|Σ0 (ψη′ + ξη′)
(η′,η)
|η′| ·
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Fig. 3. The evolution of the maximum perturbation of the sur-
face density in the case when the initial values of linear and
nonlinear terms of perturbation are in phase.

In analogy to Fuchs (1996) we group together components
with fully imaginary ωη into wave-packets and take the
wavenumber ηmax. Other components are grouped to the
wave-packets of the same width and approximated by
the average wave-numbers. The ξηmax modes grow, the
ψηmax and the φηmax modes descend. Other modes oscil-
late with decrease.

Demanding η = η′ = |η − η′| = ηmax we obtain from
geometrical consideration:

(η − η′±,η′±) = − 1
2η

2
max (η′±,η) = 1

2η
2
max , (46)

where η′+ and η′− are two wave-vectors inclined at angles
60o to the wave-vector η. It means that ξη wave-packets
non-linearly interact with others with wave-vectors η′±.
Using Eqs. (29) and (46), the set of Eqs. (45) can be sim-
plified to the form

ξ̇ = (iω(2) +A)ξ + Bξ+ξ−
ξ̇+ = (iω(2) +A)ξ+ + Bξξ∗−
ξ̇− = (iω(2) +A)ξ− + Bξξ∗+ ,

(47)

where ξ ≡ ξη, ξ+ ≡ ξη+ , ξ− ≡ ξη− , the asterisk has
meaning of the complex conjunction and

A = −−i18RV c2Σ̇0γ + 18V 2c2Σ̇0 + 2R4π2G2ρ2
0Σ̇0

2Σ0(9V 2c2 + π2G2ρ2
0R

4)

−−i18V 2c2Σ0γ + 2π2G2ρ2
0R

3V Σ0

2Σ0(9V 2c2 + π2G2ρ2
0R

4)

− i9RV̇ c2Σ0γ + 9V V̇ c2Σ0

2Σ0(9V 2c2 + π2G2ρ2
0R

4)
(48)

and

B =
iπ3G3Σ3

0R− i12πGΣ0c
2V
(
V
R + iγ

)
4c4γ

, (49)

where

γ =

√
−V

2

R2
− π2G2Σ2

0

c2
· (50)
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Fig. 4. The solution of the set of Eqs. (47) with the initial
conditions corresponding to Fig. 3.

The set of Eqs. (47) describe the time evolution of one
triplet of the most interacting modes (η,η+,η−). A is
coming from the time derivative of the eigenvector in (43).
Its amplitude is much less than the amplitude of ω(2) ex-
cept around the time tb, when ω(2) is close to zero. The
resulting effect is the time evolution of ξ, ξ+, ξ−, which
for t > tb initially decrease and start to grow only with
some delay (see Fig. 4). Nevertheless, the transformation
of ξ, ξ+, ξ− to Σ gives the continuous increase of Σ after
tb (see Fig. 3). A is the term originating in the transfor-
mation of Σ, Ω to ξ, ξ+, ξ−, and it is important around tb
only.

6.1. The numerical solution

The set of Eqs. (47) can be solved numerically. We start at
the time tb which is the time when the instability begins
(imaginary part of ω(2)

η,max starts to be negative). First we
select real and imaginary parts of all initial perturbation
amplitudes ξ, ξ+, ξ−, which have the meaning of initial
perturbations of the surface density and of the velocity,
such that they correspond to Σ1/Σ0 = 0.05. The mag-
nitude of these perturbations in physical values can be
computed from the eigenvectors (31).

The solution is determined by parameters of two types:
the first ones, as speed of sound c in the shell, are constant
values, the second ones, as the radius of the shell R(t),
the expansion velocity V (t) and its time derivative and
the surface density Σ0(t) and its time derivative, are func-
tions of time. We can get them either from the analytical
Sedov solution (4–6), or from the numerical simulations
of the expanding HI shells described by Ehlerová et al.
(1997). In this paper we use the Sedov solution (Eqs. 4–6)
with following parameters: total energy Etot = 1053 erg,
density of ambient medium n0 = 1 cm−3, average molecu-
lar weight µ = 1.3, sound speed in the shell c = 1 km s−1.

The time evolution of Σ0 and Σ1 are presented in
Figs. 3, 5, and 7 and the corresponding amplitudes of real
and imaginary parts of ξ, ξ+, ξ− for the first two cases in
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Fig. 5. The evolution of the maximum perturbation of the sur-
face density in the case when the initial values of linear and
nonlinear terms of perturbation are in anti-phase.

Figs. 4 and 6. We can distinguish two situations: the lin-
ear and non-linear parts of the perturbation are in phase,
so that they support each other, which is seen in Figs. 3
and 4, or they are in anti-phase, so that the nonlinear
contribution slows down the linear growth of perturba-
tion, as it is visible in Figs. 5 and 6. Contribution of
the non-linear terms depends on the shape of the form-
ing fragments, i.e. on the value of the amplitude func-
tions ξ, ξ+, ξ−. Figures 3–6 show the extreme cases of that
contribution. Intermediate cases, keeping the initial value
of the perturbation in surface density at the same level,
Σ1/Σ0 = 0.05, are given in Fig. 7. We can also see in Fig. 3
that the maximum contribution of nonlinear terms to the
value of the perturbed surface density, at the time when
Σ0 = Σ1, is ∼25% of the linear value.

All the curves start at the instability time tb: functions
Ση, Ση+ and Ση− grow, although the absolute value of
the appropriate amplitude functions ξ, ξ+ and ξ− descend
during the short time after the instability begins. It is
because Ση, Ση+ and Ση− are connected to the amplitude
functions through the eigenvector (31), whose Σ part is
always growing with time.

The surface density Σ at any point of the tangential
plane may be computed at any expansion time after tb
using eigenvectors (31) and Eq. (18) written for modes
(η,η+,η−). In Fig. 8 we show the distribution of the sur-
face density Σ and in Fig. 9 the velocity field of the surface
flows v in the tangential plane for ηmax in the case when
the initial perturbations have linear terms in phase with
the nonlinear terms corresponding to Figs. 3 and 4 at the
time t = 55 Myr. Figures 10 and 11 give Σ and v in
the tangential plane at the same time for the case when
the linear and nonlinear terms of the initial perturbation
are in anti-phase corresponding to Figs. 5 and 6. In the
former case, the fragments are well defined and the density
peaks are separated one from another with deep depres-
sions in Σ. In the later case, there are high surface density
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Fig. 6. The solution of the set of Eqs. (47) with the initial
conditions corresponding to Fig. 5.
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Fig. 7. The evolution of the maximum perturbation of the sur-
face density for intermediate phase-shifts between initial values
of the linear and nonlinear terms of perturbation.

chains with no distinct peaks and we cannot separate in-
dividual fragments.

We measure the total mass concentrated in one of the
well defined fragments shown in Fig. 8. The mass of this
fragment is given in Fig. 12 as a function of time. It de-
creases because the decrease of its size, which is propor-
tional to λmax = 2πR

ηmax
, and increases because the accu-

mulation of the ambient medium and surface flows. After
tb the resulting mass of the fragment decreases, since the
influence of the size shrinking dominates. This happens
when the magnitude of dλmax

dt is larger then the amplitude
of the surface flows vmax (see Fig. 13). The magnitude
of dλmax

dt decreases with time and vmax increases, and at
t ∼ 53 Myr they are equal. Since then the inflow domi-
nates and the fragment mass growths.

6.2. The mass spectrum of fragments

After tb, when the first mode begins to be gravitationally
unstable, more and more modes are unstable and the in-
terval of instability growths. In Fig. 14 we give the values
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Fig. 8. The distribution of Σ in the tangential plane at the
time t = 55 Myr for the perturbation shown in Figs. 3 and 4.

Fig. 9. The velocity vectors of the surface flows v correspond-
ing to Fig. 8.

Fig. 10. The same as in Fig. 8 at the same time for the per-
turbation shown in Figs. 5 and 6.

of the fragmentation integral If,η(t) as defined in (36) as
a function of time. This shows at any time the level of
development of a fragment with given η.

Mass mfrag of a fragment, which is related to λ = 2πR
η ,

may be defined as

mfrag = π

(
λ

2

)2

Σ0 =
π3R2Σ0

η2
· (51)

Fig. 11. The velocity vectors of the surface flows v correspond-
ing to Fig. 10.
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Fig. 12. The time evolution of total mass in a well defined
fragment.
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Fig. 13. λ̇ = dλmax
dt and vmax as functions of time.

The formation frequency of fragments corresponding to
the wavenumber η is proportional to If,η, and the sur-
face of the spherical shell of radius R is able to accom-
modate R2/λ2 fragments of wavelength λ. Therefore, the
number dN of fragments of mass mfrag formed out of the
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Fig. 14. The time evolution of the fragmentation integral If,η
as given by Eq. (36).

Fig. 15. The mass spectrum of fragments. The straight line is
the power law fit of the decreasing part of the spectrum m−1.4.

spherical shell of radius R in gravitational unstable modes
with wavenumber η from the interval (η, η + dη) is

dN = If,η ×
R2

λ2
dη. (52)

With this equation, we may derive the mass spectrum of
fragments dN/dmfrag at some time. It is shown in Fig. 15
at the time tf , when Σ0 = Σ1. The masses are between
a few times 103 M� and 1.5 × 106 M� with the highest
probability peak at mfrag ' 104 M�. At that time is the
radius of the shell almost 1 kpc with the expansion velocity
∼5 km s−1, and the total mass collected in the shell is
1.14× 109 M�.

The decreasing part of the mass spectrum can be ap-
proximated as a power law dN/dmfrag ∼ mα

frag: the fit
of the this part of dN/dmfrag gives α = −1.4, which is
close to the observed mass spectrum of GMC in the Milky
Way: Combes(1991) gives α = −1.5. NANTEN survey of
the CO emission of the LMC (Fukui 2001) gives steeper
slope of α = −1.9, which may be explained in the con-
nection to higher level of random velocities in the LMC
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Fig. 16. Dependence of the fragmentation time on the initial
perturbation of the surface density. The vertical line gives the
time when the value of If,ηmax = 1.

compared to the Milky Way resulting in the deficit of high
mass clouds.

6.3. The time of fragmentation

The evolution of the maximum perturbation of the sur-
face density can be used to determine the fragmentation
time tf of the shell. Because at advanced stages the value
of the maximum perturbation rises steeply with the time
(see e.g. Fig. 3), we define tf as the time, when maximum
perturbation of the surface density is equal to the unper-
turbed value: Σ1(tf) = Σ0(tf). Using the fragmentation
integral If,η we may compare the development level of dif-
ferent fragments at tf (see Fig. 14). We can say that the
most frequent fragments are also the most developed, the
more massive form only later.

tf depends on the initial conditions of the set of
Eq. (47). They correspond to the initial perturbation of
the surface density. We can set them to the value typical
for the inhomogeneities in the clumpy interstellar medium
(1019−1020 cm−2), which is at tb: 0.01− 0.2× Σ0.

The dependence of tf on the value of the initial pertur-
bation, Σ1(tb), is shown in Fig. 16. Fragments form since
45 Myr, for the largest perturbations, to 70 Myr, for the
smallest perturbations. The spread in tf for given Σ1(tb)
is connected to the different shape of the perturbation
as shown in Fig. 7. This time may be compared to the
fragmentation time tf,η obtained for ηmax from the linear
analysis defined as a time when If,η = 1.

7. Conclusions

We evaluate the time evolution of perturbations on the
surface of an expanding shell. We complement the linear
analysis of the gravitational fragmentation process with
the inclusion of nonlinear terms, and we compute the time
evolution of fragments after the time when the shell starts
to be unstable. Some initial perturbations develop into
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well separated fragments and we estimate the time evo-
lution of the mass of a fragment, the mass spectrum of
fragments, and the spread in their formation time. The
computed mass spectrum is close to the observed mass
distribution of GMC in the Milky Way, but slightly flat-
ter than the mass spectrum of molecular clouds observed
in the LMC. This may be related to higher level of random
motions in the LMC compared to the Milky Way, which
restricts the formation of late time massive fragments and
steepen the resulting mass spectrum. Also interesting is
that the more massive fragments form at later times of the
shell evolution than the less massive fragments. The for-
mation time depends on the value of the initial perturba-
tion: tf = 45−70 Myr. Large density fluctuations shorten
this time and thus in the disturbed ISM with large density
fluctuations the fragments form sooner than in quiet and
smooth ISM where the density fluctuations are small.
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