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Introduction

In this work we study the formation of stars and galactic molecular clouds
triggered by HI shells and super-shells. We investigate the gravitational in-
stability evolving in these objects using the analytical and numerical models.
The 3D numerical model is based on the hydrodynamic code ZEUS and the
multigrid Poisson solver Šemı́k. Both analytical and numerical models are
used to obtain the mass spectrum of fragments created by the gravitational
instability. The obtained spectrum is compared to the initial mass function
of stars and to the mass spectrum of Galactic giant molecular clouds.

The work is divided into seven chapters. In the first chapter we introduce
the HI shells and super-shells, their observations and theories of their origin.

The second chapter deals with the theoretical models which describe the
evolution of the expanding shells. The models are based either on the direct
solution of the hydrodynamic equations or on the thin-shell approximation.

In the third chapter we present the theory of the gravitational instability
of the expanding shell. We give the procedure of obtaining the mass spectrum
of fragments and show the obtained spectra.

The ZEUS hydrocode, including our add-ons and modifications, is de-
scribed by Chapter 4.

Chapter 5 describes the Poisson solver Šemı́k, which we have developed to
compute the gravitational potential in the numerical model of the expanding
shell. It is based on the multigrid method – one of the fastest and most
progressive method of solving the elliptic equations.

The numerical model of the expanding shell is described in Chapter 6. It
also includes the tests of the code against the analytical models.

In the last Chapter 7 we present the 3D numerical simulations of the
expanding self-gravitating shell. We follow the evolution of the gravitational
instability and compare it to the analytical results. Finally, we determine
the mass spectrum of fragments.

Finally, we attach the published (or accepted) papers which includes the
results presented in this work:

Wünsch, R., Palouš, J., 2001, A&A, 374, 746

3



4 CONTENTS
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Chapter 1

HI shells and super-shells

1.1 HI shells and super-shells in observations

HI shells are structures in the neutral hydrogen in galaxies observed in the
21 cm line. They are regions of the low density surrounded by the dense thin
shell. The scales of these objects are from 10 pc to 1 − 2 kpc. They may
expand supersonically, with velocities up to several tens of km/s. The typical
density in the cavity is by 3− 4 orders less than the density of the ambient
medium, the typical surface density of the shell is 1020−1022 hydrogen atoms
per cm2. Their expansion energies are 1051 − 1054 ergs, objects with energy
greater than 5× 1052 ergs are referred as super-shells.

First HI shell in the Milky Way was discovered by Menon (1958). Later,
many shells and super-shells were discovered by Heiles (1979, 1984, 1990) in
the Weaver and Williams (1973) HI survey of the Milky Way. Among many
recent observations of HI shells in the Milky Way we mention Ehlerová et
al. (2001) and McClure-Griffiths et al. (2002). Ehlerová & Palouš (2003)
apply the automatic search algorithm to the Leiden-Dwigeloo survey of the
Milky Way (Hartmann & Burton, 1997) and found ∼ 300 HI shells in the
2nd Galactic quadrant.

HI shells were also found in many of the nearby galaxies within 10 Mpc.
Examples can be LMC (Kim et al. 1998), SMC (Stanimirovic et al., 1999),
M 31 (Brinks & Bajaja, 1986), M 33 (Deul & den Hartog, 1990), Holmberg II
(Puche et al., 1992), M 101 and NGC 6946 (Kamphuis, 1993) and IC 10
(Wilcots & Miller, 1998).

Fig. 1.1, left panel, shows the observation of the HI shell made by Ehlerová
et al. (2001). We can see the hole surrounded by the dense wall. We should
note that this is the ideal case – in many cases only an arc of the wall or
no wall is observed. The shape of the real shells may be complicated, they
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6 CHAPTER 1. HI SHELLS AND SUPER-SHELLS

Figure 1.1: The galactic HI shell GS59.9-1.0+38 observed by Ehlerová et al (1997)
with 100 m Effelsberg radiotelescope. Left: The lb-cut of the data-cube in velocity
channel v = 36.6 km/s. Right: The spectrum through the centre of the shell. The
average spectrum of the surrounding area was subtracted.

can even contain clouds inside the structure (real or only projected). This
all makes their identification in the radio observation really difficult. The
spectrum in the centre of the shell is shown by Fig. 1.1, right panel. The
two distinct peaks (structure typical for the HI shell spectra) represent the
front and back walls of the shell, the half of their distance is the expansion
velocity.

Shapes of shells are affected by the spatial distribution of the ambient
mass and by its possible motion (e.g. due to the galactic differential rotation).
In galaxies with thin gaseous disks, for instance in rapidly rotating disk
galaxies, the cylindrical, z-elongated structures may be formed. They are
called worms. Some of these worms may break through the galactic disk and
even open to the galactic halo – these ones are called chimneys. In this case
the hot gas from the shell interior, which is enriched by metals made by stars,
may escape to the galactic halo. This may be the way, how to explain the
observed hot metal rich halo gas (Cox & Smith, 1974; McKee & Ostriker,
1977). Fig. 1.2 shows an example of the chimney.

1.2 Origin of the HI shells and super-shells

In the most common concept, HI shells are results of the shock waves created
by a great amount of energy inserted into the interstellar medium (ISM). For



1.3. TRIGGERED STAR FORMATION 7

Figure 1.2: The chimney or worm GSH298-01+35 found by McClure-Griffiths et
al (2002) in the Southern Galactic Plane Survey made by 64 m Parkes telescope.
The kinematical distance of this structure is 10.5 kpc, its dimensions are 75 pc
×1 kpc. Estimated energy required to create this object is 1.1× 1052 ergs.

the review see Tenorio-Tagle & Bodenheimer (1988) or van der Hulst (1996).
The smallest structures with energies ∼ 1051 ergs may be created by a single
O- or B-type star with the powerful stellar wind (they are called stellar wind
bubbles) or by a single supernovae explosion (i.e. they are later stages of the
supernovae remnants). The OB-associations with 10-100 massive stars may
be responsible for the larger shells and super-shells. These stars add with
their stellar winds and SN explosions the energy into the cavity during a time
period 10−20 Myr. The most energetic super-shells (with energy > 1053 erg)
may be formed by the group of several OB association with ∼ 1000 young
stars. Recently, also explosions connected to the gamma ray bursts (GRB)
are considered (see Efremov et al.).

Alternative theories assume that the arc of the shell can be created by
the encounter of the galactic HI disk with the high velocity cloud (HVC) or
a dwarf galaxy (Tenorio-Tagle et al., 1987). This theory may explain the
existence of the shell-like structures with high energies in locations, where
other energy sources are difficult to find.

1.3 Triggered star formation

One of the most interesting thing about the HI shells is that they can trigger
the star formation (see Elmegreen, 1998 for the review on the triggered star
formation in general).

During the expansion into the ambient medium, new mass is accreted
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to the shell while its expansion velocity and temperature are decreasing.
At a certain time the efficiency of the radiative cooling in the shell rapidly
grows and the shell collapses into the thin layer (Falle, 1981). The cold and
thin shell may become gravitationally unstable and break into fragments
(Elmegreen, 1994, Ehlerová et al., 1997).

The masses of these fragments depend, in particular, on the density of the
ambient medium. In the typical density of the galactic ISM 1 hydrogen atom
per cm3 the fragments with masses 104−106 M⊙ are formed, which correspond
to the masses of galactic molecular clouds. In densities 106 − 107 hydrogen
atoms per cm3, which can be found in the cores of molecular clouds, the
gravitational instability creates the fragments with stellar masses 1−103 M⊙.

The HI shells, on the one hand, may be created by the young stars and the
groups of stars; the gravitational instability of these shells, on the other hand,
can trigger the new star formation. Thus, HI shells may be the mechanism
which propagates the star formation in galaxies from one place to another.
(Mueller & Arnett, 1976; Jungwierth & Palouš, 1994).



Chapter 2

Theoretical models of
expanding shells

In this chapter we describe theoretical models of expanding shells. These
models can be used in various scales, including supernovae remnants (SNR),
stellar wind bubbles (SWB) and larger HI shells and super-shells – the objects
which we are interested in.

In the first two sections we deal with the spherically symmetric analytical
solutions of the hydrodynamic equations – the Sedov and Weaver solutions.
We give a bit detailed description, this is because we use these solutions for
the tests of our numerical model, and also due to the mathematical beauty
of these self-similar solutions.

Section 2.3 deals with the thin-shell approximation, which describes the
expansion of the thermally collapsed shell. This approach can also be used
in numerical codes for simulations of the expanding shells in the more com-
plicated physical situations.

Section 2.4 describes the models of the spherically symmetric thin shell
with the self-gravity as described by Whitworth & Francis (2002).

In the last section we give the list of the several numerical simulations of
the expanding shells. However, this list cannot be considered to be complete.

2.1 The Sedov solution

The Sedov solution is 1D analytical solution of hydrodynamic equations for
the problem of an explosion. It was obtained by Sedov (1959) to describe
the shock-wave spreading in the atmosphere after the explosion of an atomic
bomb. Later, it was used by Straka (1973) and other authors to describe
the second (energy conserving) phase of supernovae remnants. A detailed

9



10 CHAPTER 2. THEORETICAL MODELS OF EXPANDING SHELLS

discussion of the Sedov solution can be found in many texts (e.g. Shore,
1992; Bicknell, 2001), so we suggest only key points of its derivation.

Let us assume that energy E0 is released in a homogeneous medium of
density ρ0. If the amount of energy is sufficient, the spherical expanding shock
is created. We search for the spherically symmetric solution of hydrodynamic
equations, i.e. density ρ, radial velocity v and pressure p as functions of
distance from the centre r and time t. The physical quantities have no
characteristic values in such generally defined problem. Therefore, we can
search for a solution in a self-similar form – the independent variables r
and t are combined in one dimensionless parameter ξ and the hydrodynamic
equations are solved for this parameter. A specific solution with a certain E0

and ρ0 in a certain time t can be then obtained by a simple scaling.
Since E0 has dimensions ML2T−2 and ρ0 has dimensions ML−3 (M de-

notes mass, L length and T time), the dimensionless parameter ξ is

ξ = β

(
E0

ρ0

)−1/5

rt−2/5 , (2.1)

where β is a constant, which can be chosen so that the shock-front is at
ξ = 1. Then, the position of the shock is given by the equation

rsh = β−1

(
E0

ρ0

)1/5

t2/5 (2.2)

and the shock expansion velocity is

vsh =
drsh
dt

=
2

5
β−1

(
E0

ρ0

)1/5

t−3/5 . (2.3)

If we use the polytropic equation of state p ∼ ργ , spherically symmetric
hydrodynamic equations have a form

∂ρ

∂t
+

1

r2

∂

∂r
(r2ρv) = 0

∂v

∂t
+ v

∂v

∂r
+

1

ρ

∂p

∂r
= 0 (2.4)

∂

∂t
(pρ−γ) + v

∂

∂r
(pρ−γ) = 0

We can replace the dependent variables ρ(r, t), v(r, t) and p(r, t) by di-
mensionless variables G, U and Z defined by the relations

ρ = ρ0G(ξ), v =
2

5

r

t
U(ξ), c2s =

γp

ρ
=

4

25

r2

t2
Z(ξ) , (2.5)
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Figure 2.1: The Sedov solution.

which are functions of only one similarity variable ξ. The Eqs. 2.4 will take
a form

(U − 1)
d lnG

d ln ξ
+

dU

d ln ξ
+ 3U = 0

(U − 1)
dU

d ln ξ
+ U [U − 5/2] + Z

d lnG

d ln ξ
= 0 (2.6)

d lnZ

d ln ξ
− (γ − 1)

d lnG

d ln ξ
+

2(U − 5/2)

U − 1
= 0 .

Boundary conditions at the shock are given by Rankine-Hugoniot condi-
tions for the infinitely strong shock (e.g. Shore, 1992)

ρ2 =
γ + 1

γ − 1
ρ1, v2 =

2

γ + 1
vsh, p2 =

2

γ + 1
ρ1v

2
sh (2.7)

where ρ2, v2 and p2 denote the post-shock quantities, while ρ1 ≡ ρ0 is the pre-
shocked density. The boundary conditions in dimensionless variables have a
form

U(1) =
2

γ + 1
, G(1) =

γ + 1

γ − 1
, Z(1) =

2γ(γ − 1)

(γ + 1)2
. (2.8)

The system 2.6 – 2.8 can be solved analytically, the explicit solution as
given by Sedov (1972) has a form
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r

r2
=

[
(ν + 2)(γ + 1)

4
V

]− 2
2+ν

[
γ + 1

γ − 1

(
(ν + 2)γ

2
V − 1

)]−α2

×

×

[
(ν + 2)(γ + 1)

(ν + 2)(γ + 1)− 2[2 + ν(γ − 1)]

(

1−
2 + ν(γ − 1)

2
V

)]−α1

,

v

v2
=

(ν + 2)(γ + 1)

4
V
r

r2
,

ρ

ρ2
=

[
γ + 1

γ − 1

(
(ν + 2)γ

2
V − 1

)]α3
[
γ + 1

γ − 1

(

1−
ν + 2

2
V

)]α5

× (2.9)

×

[
(ν + 2)(γ + 1)

(ν + 2)(γ + 1)− 2[2 + ν(γ − 1)]

(

1−
2 + ν(γ − 1)

2
V

)]α4

,

p

p2
=

[
(ν + 2)(γ + 1)

4
V

]− 2ν

2+ν

[
γ + 1

γ − 1

(

1−
ν + 2

2
V

)]α5+1

×

×

[
(ν + 2)(γ + 1)

(ν + 2)(γ + 1)− 2[2 + ν(γ − 1)]

(

1−
2 + ν(γ − 1)

2
V

)]α4−2α1

,

where ν is the dimension of space in which the explosion occurs (in this case
ν = 3). V is the parameter which takes values from 2/(γ(ν + 2)) (centre of
the explosion) to 4/((ν + 2)(γ + 1)) (the shock-front). Constants α1 – α7

have values

α1 = (ν+2)γ
2+ν(γ−1)

[
2ν(2−γ)
γ(ν+2)2

− α2

]

, α2 = 1−γ
2(γ−1)+ν

,

α3 = ν
2(γ−1)+ν

, α4 = α1(ν+2)
2−γ

,

α5 = 2
γ−2

, α6 = γ
2(γ−1)+ν

,

α7 = [2+ν(γ−1)]α1

ν(2−γ)
.

(2.10)

The Sedov solution 2.9 with ν = 3 and γ = 5/3 is shown by Fig. 2.1. The
constant β can be obtained by the numerical integration (see e.g. Bicknell,
2001). For γ = 5/3 it has a value

β
.
= 0.868 . (2.11)

2.2 Weaver’s model of SWB

The semi-analytical model of the expanding shell with the continuous energy
input was developed by Castor et al. (1975) and Weaver et al. (1977) for
the case of stellar wind bubble (SWB). The authors assume an early type
star which blows a steady, spherically symmetric stellar wind which interacts



2.2. WEAVER’S MODEL OF SWB 13

shell

free wind

shocked wind

ambient medium

shock front

wind source

R

0 0Tρ

R2R1

c

contact
discontinuity

reverse shock

Figure 2.2: Structure of the stellar wind bubble as described in Weaver et al.
(1977).

with the homogeneous interstellar medium of density ρ0. The mechanical
luminosity of the wind Lw is given as

Lw =
1

2

dMw

dt
V 2

w , (2.12)

where Vw and dMw/dt are the constant terminal velocity and mass-loss rate
of the wind, respectively.

The stellar wind creates the structure which is suggested by Fig. 2.2. It
consists of four distinct regions: a free wind region (a), a shocked stellar wind
region (b), a shell of shocked interstellar gas (c) and an ambient interstellar
medium (d). The evolution of the bubble may be divided into three stages:
in the initial, adiabatic stage the bubble expands so fast that the radiative
cooling is unimportant; in the second stage the radiative loss from the shell
causes it to collapse into a thin layer; and in the third stage the radiative
cooling in region (b) starts to be important affecting the dynamics of the
whole bubble. In this section we are interested in particular in the first
adiabatic stage where the solution is self-similar and can be easily scaled to
the problem of the expanding super-shell. In Section 6.2.2, we use it to test
our numerical model. The self-similar solution exists also in the second stage,
it is described in the following section on the thin-shell approximation.

The hydrodynamic equations, which describe the problem are the same
as the Eqs. 2.4 describing the Sedov problem. The dimensionless self-similar
variable, which is composed of independent variables r and t and problem
parameters Lw and ρ0, has a form

ξ = β

(
Lw

ρ0

)−1/5

rt−3/5 , (2.13)
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where β is a constant of order of unity which can be chosen so, that shock-
front is at the position ξ = 1. Then we get

R2(t) = β−1

(
Lw

ρ0

)1/5

t3/5 (2.14)

and

V2(t) =
dR2

dt
=

3

5
β−1

(
Lw

ρ0

)1/5

t−2/5 . (2.15)

If we define the dimensionless variables G(ξ), U(ξ) and P (ξ) by relations

ρ(r, t) = ρ0G(ξ), v(r) = V2U(ξ), p(r) = ρ0V
2
2 P (ξ) , (2.16)

the set of hydrodynamic equations will take a form

3(U − ξ)U ′ − 2U + 3P ′/G = 0

(U − ξ)G′/G+ U ′ + 2U/ξ = 0 (2.17)

3(U − ξ)P ′ − 3γP (U − ξ)G′/G− 4P = 0

Using the Rankine-Hugoniot conditions for the strong shock (G(1) = 4,
U(1) = 3/4, and P(1) = 3/4), the eqs. 2.17 can be solved numerically in
region (c) (the solution can be found in Weaver et al., 1977). The remarkable
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property of the solution is that the function G(ξ) drops suddenly to zero at
ξc = 0.86, determining the position of the contact discontinuity (see Fig. 2.3).
The solution in region (c) is self-similar, bounded by the shock-front at R2

and the contact discontinuity at

Rc = 0.86R2 . (2.18)

The numerical integration shows that the constant β has a value

β
.
= 1.14 (2.19)

for the polytropic index γ = 5/3.
The solution in region (b) is not self-similar (the ratio R1/Rc does not re-

main constant during the evolution), but it is possible to obtain an analytical
solution using some approximations (see Weaver et al., 1977) – the position
of the reverse shock R1 is determined by the balance between ram pressure
of the stellar wind and the internal energy density in region (b). The most
interesting property of this solution is that the region is almost isobaric, with
the steady flow of mass.

The Weaver’s model gives also the energy fractions in particular regions.
They remain constant during the whole adiabatic stage. In region (b) the
kinetic energy is negligible and internal energy is

Eb =
5

11
Lwt (2.20)

and in region (c) the total energy is

Ec =
6

11
Lwt , (2.21)

which is the work done across the contact discontinuity surface up to the
time t. The numerical integration of the solution of the system 2.17 shows
that 40.4% of Ec is the kinetic energy and 59.6% is the internal energy.

2.3 The thin-shell approximation

Let us assume a spherically symmetric infinitesimally thin shell of radius rsh
expanding with velocity vsh into the homogeneous medium of density ρ0. The
energy can be inserted either initially (initial explosion with energy E0), or
continuously with rate L. If we neglect the gravity, the momentum equation
for the shell has a form
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d

dt
(mshvsh) = 4πr2

sh(Pint − Pext) , (2.22)

where msh = 4/3πr3
shρ0 is the mass of the shell, Pint and Pext are pressures in

the shell interior and the ambient medium, respectively. Neglecting the ex-
ternal pressure Pext and assuming the isobaric shell interior with the pressure
given by the equation of state in a form

Pint =
2

3

Eth

V
, (2.23)

where Eth is the thermal energy in the shell interior of the volume V =
4/3πr3

sh, the Eq. 2.22 will take a form

r3
sh(3ṙ2

sh + rshr̈sh) =
3Eth

2πρ0

, (2.24)

where dots denote derivatives with respect to time. A solution of Eq. 2.24 is
a power-law in a form

rsh = atb , (2.25)

where a and b are constants to be determined. Inserting Eq. 2.25 into Eq. 2.24
we get

a5b(4b− 1)t5b−2 =
3Eth

2πρ0
. (2.26)

The classical infinitesimally thin-shell approximation (see e.g. Ehlerová,
2000) assumes that the total energy of the system is conserved (i.e. the
radiative cooling of the shell has no effect on the shell dynamics) and consists
of only the thermal energy of the shell interior and the kinetic energy of the
shell

Etot = Eth +
1

2
mshv

2
sh . (2.27)

If we insert this relation in Eq. 2.26, we get

a5[5b2 − 2]t5b−2 =
3Etot

2πρ0
. (2.28)

In the case of the abrupt energy input Etot ≡ E0 is simply the energy of
the initial explosion. The constants a and b can be easily determined from
Eq. 2.28 by demanding the LHS to be independent on time. The solution of
Eq. 2.22 has a form
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rsh =

(
15

4π

)1/5 (
E0

ρ0

)1/5

t2/5

vsh =
2

5

(
15

4π

)1/5 (
E0

ρ0

)1/5

t−3/5 (2.29)

and in astrophysical units

rsh = 72.2

(
E0

1051 erg

)1/5 ( µ

1.3

n0

cm−3

)−1/5
(

t

Myr

)2/5

pc

vsh = 28.2

(
E0

1051 erg

)1/5 ( µ

1.3

n0

cm−3

)−1/5
(

t

Myr

)−3/5

km s−1 .(2.30)

The thermal energy in the shell interior remains constant and has a value
Eth = 3

5
E0.

In the case of the continuous energy input, where Etot = Lt, has the
solution of Eq. 2.22 a form

rsh =

(
5

4π

)1/5 (
L

ρ0

)1/5

t3/5

vsh =
3

5

(
5

4π

)1/5 (
L

ρ0

)1/5

t−2/5 (2.31)

and in astrophysical units

rsh = 57.9

(
L

1051 erg Myr−1

)1/5 ( µ

1.3

n0

cm−3

)−1/5
(

t

Myr

)3/5

pc (2.32)

vsh = 34.0

(
L

1051 erg Myr−1

)1/5 ( µ

1.3

n0

cm−3

)−1/5
(

t

Myr

)−2/5

km s−1 .

The thermal energy in the shell interior is the constant fraction of the total
energy Eth = 7

10
Lt.

In Weaver (1977) the thermal energy in the shell interior is determined
from the equation

dEth

dt
= L− 4πr2

shPint
drsh
dt

, (2.33)
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where the second term on the RHS has the meaning of the work done by the
shell. Eqs. 2.22, 2.23 and 2.33 have a solution

rsh =

(
250

308π

)1/5 (
L

ρ0

)1/5

t3/5

vsh =
3

5

(
250

308π

)1/5 (
L

ρ0

)1/5

t−2/5 (2.34)

Eth =
5

11
Lt , Ekin,sh =

15

77
Lt , Eth,sh =

27

77
Lt ,

where Ekin,sh and Eth,sh are the kinetic and thermal energies of the shell.
Note that this solution is almost the same as the solution of the hydro-

dynamic equations in the case of the adiabatic expanding bubble. The only
difference is the constant β (see Eq. 2.14), which has changed from β = 1.14
to β = 1.32.

2.4 The self-gravitating thin shell

The Weaver’s solution for the infinitesimally thin shell (Eq. 2.34) was ex-
tended to the effect of self-gravity by Whitworth & Francis, 2002. They use
the same model of the thin shell of radius rsh expanding with velocity vsh into
the homogeneous medium of density ρ0. The energy is inserted continuously
with rate L. The energy conservation law is the same as in Eq. 2.33

d

dt

(
3

2
PintV

)

= L− PintSvsh , (2.35)

where S = 4πr2
sh and V = 4

3
πr3

sh denote the surface and volume of the shell,
Pint is the pressure in the shell interior.

The momentum equation has a form

d

dt
(mshvsh) = SPint −

Gm2
sh

2r2
sh

, (2.36)

where msh = ρ0V is the mass of the shell. The second term on the RHS
is the radial gravitational force which decelerates the expansion. The factor
1/2 comes from the averaging of the gravitational force experienced by the
individual layers of the shell (the inner layer experiences zero gravitational
force, while the outer one is decelerate by the force Gmsh/r

2
sh).

If we express the pressure in the shell interior from Eq. 2.36, we get

Pint = ρ0

(
rshr̈sh

3
+ ṙ2

sh +
2πGρ0r

2
sh

9

)

(2.37)
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Figure 2.4: The solution of Eq. 2.41 (the thick line).

and
dPint

dt
= ρ0

(
rsh

...
r sh

3
+

7ṙshr̈sh
3

+
4πGρ0rshṙsh

9

)

, (2.38)

where dots denote the time derivatives. By inserting Eqs. 2.37 and 2.38 into
Eq. 2.35 we get

r4
sh

...
r sh + 12r3

shṙshr̈sh + 15r2
shṙ

3
sh +

14πGρ0r
4
shṙsh

3
=

3L

2πρ0

. (2.39)

If we define the dimensionless variables

τ = t
t0
, t0 =

(
3π

32Gρ0

)1/2

ξ = rsh

r0
, r0 =

(
2000GL
231π2

)1/5
t0

, (2.40)

the Eq. 2.39 simplifies to a form

ξ4
...
ξ + 12ξ3ξ̇ξ̈ + 15ξ2ξ̇3 +

7π2

16
ξ4ξ̇ =

231

125
. (2.41)

This equation can be solved numerically, the solution is shown by Fig. 2.4.
In the initial period of the evolution (for t≪ t0), the gravity is unimportant
(the last term in Eq. 2.36 is small) and the solution follows the Weaver’s
thin-shell solution

ξ = τ 3/5 → rsh =

(
125Lt3

154πρ0

)1/5

. (2.42)
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Later, when t ≫ t0, the gravitational term in the Eq. 2.36 dominates,
and the solution of the Eq. 2.41 can be approximated by

ξ =

(
528τ

25π2

)1/5

→ rsh =

(
45Lt

28π2Gρ0

)1/5

, (2.43)

which can be obtained by neglecting the pressure term in Eq. 2.36. As we
can see, the expansion of the shell is substantially decelerated.

2.5 Numerical models

There are many works which use numerical codes to model the problem of
the expanding shell, some of them are mentioned in this section. Most of the
codes can be divided in two groups: the first uses the thin-shell approxima-
tion, the others are the hydrodynamic or magnetohydrodynamic codes.

2.5.1 The thin-shell approximation

The thin-shell approximation codes usually split the infinitesimally shell into
small parts and solve the dynamical equations for each part separately. Each
part of the shell accretes new mass and experiences forces given by internal
and external pressure and the gravitational field. So, in fact, it is a kind
of the N-body code. Simulations of this kind in 2D, which are also called
1+1/2 dimensional, have been developed by Tenorio-Tagle & Palouš (1987)
and Palouš et al. (1990). They include the z-stratification of the ambient
medium, the galactic differential rotation and the radiative cooling of the
shell interior.

The thin-shell approximation codes in 3D (2+1/2 dimensional) have been
performed by Palouš (1990, 1992), Silich et al. (1996) and Ehlerová (2000).
They include also the effect of the evaporation of small interstellar clouds,
which are engulfed by the expanding shell. These clouds evaporate in the
hot shell interior increasing its density. This leads to the higher energy loss
by the radiative cooling, which increases the X-ray luminosity of the bubble
and affects the shell dynamics.

The advantage of the thin-shell approximation codes is that they are
substantially faster than the (magneto)hydrodynamic simulations. It makes
these codes ideal as the reference models when searching for the physical
parameters of a real object.
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2.5.2 HD and MHD simulations

Chevalier (1974) studied an evolution of supernovae remnants using a spher-
ically symmetric 1D hydrodynamic code. His model includes the magnetic
field (in the form of the magnetic pressure) and the radiative cooling. He
obtained the famous formula

(
E0

erg

)

= 5.3× 1043
( n0

cm−3

)1.12 ( vsh

km s−1

)1.40
(
rsh
pc

)3.12

, (2.44)

which connects the energy E0 necessary for creating the shell to its radius
rsh, expansion velocity vsh and particle density of the ambient medium n0.
This formula is often used by observers to determine the energy of an object.

The formation of the thin shell in supernovae remnants was simulated by
Falle (1975). He used the 1D Lagrangian hydrocode which includes the mag-
netic field as the magnetic pressure. Falle (1981) shows that the transition
from the Sedov (adiabatic) phase is accompanied by a very quick collapse
into the thin shell due to the thermal instability. The collapse is so quick,
that multiple additional shocks may be created.

Różyczka (1985) has developed a 2D second-order accurate hydrodynamic
code and used it to study the evolution of the stellar wind bubbles. He
investigated the thermal and hydrodynamic instabilities of the thin shell.

The evolution of a super-bubble expanding in the inhomogeneous medium
was studied by Tomisaka & Ikeuchi (1986). They use the 2D hydrocode to
model the super-bubble driven by sequential SN explosions in the z-stratified
medium. Their results corresponds to the HI worms observed by Heiles
(1984).

The super-bubble blow-outs (the opening of the shell due to acceleration
of the outer shock-wave down the density gradient of the ISM) were inves-
tigated by Mac Low & McCray (1988) and Mac Low et. al (1989). They
used the thin-shell approximation and the ZEUS2D hydrocode and compared
both approaches with each other and with the models of the other authors.
They found that the thin-shell approximation worked very well.

Mac Low & Norman (1993) used the ZEUS2D hydrocode to study
the non-linear regime of hydrodynamic instabilities discovered by Vishniac
(1983). They showed that the instability saturates due to weak transverse
shocks and it does not break the shell in the fragments. Nevertheless, it
may create density enhancements which may be subject of the gravitational
instability.

Chevalier & Blondin (1995) have studied the non-linear hydrodynamic
instabilities in the SNR using the code VH-1.
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In this work we develop the 3D hydrodynamic model of the expanding
shell based on the ZEUS3D code. We use it to study the gravitational in-
stability evolving in these shells. The gravitational potential is computed by
the multigrid Poisson solver Šemı́k.



Chapter 3

The gravitational instability

In this chapter we give the theory of the gravitational instability of expanding
shells. In the first section we formulate the fluid equations and the Poisson
equation on the shell surface. These equations are linearised and analytically
solved in Section 3.2. The third Section 3.3 deals with the solution of the
equations with the quadratic terms. In the last Section 3.4 we describe
the procedure of obtaining the mass spectrum of fragments from the linear
analysis. This mass spectrum is compared to the spectra obtained with
similar procedure in different physical situations and to the observed mass
spectrum of Giant Molecular Clouds (GMC) in the Milky Way and to the
Initial Mass Function of stars (IMF).

The basic equation are formulated in 2D coordinates in the shell surface.
(u,v) denotes the scalar product of the 2D vectors u and v, the differential
operator ∇ acts in the 2D surface, too.

3.1 Fluid equations on the shell surface

We consider the cold and thin shell of radius rsh surrounding the hot medium
interior of it. It is expanding with velocity vsh into a uniform medium of
density ρ0. The intrinsic surface density of the shell Σ is composed of un-
perturbed part Σ0 plus the perturbation Σ1 (Σ = Σ0 + Σ1). Perturbation Σ1

results from the flows on the surface of the shell redistributing the accumu-
lated mass. We assume that Σ0 corresponds to rsh as Σ0 = ρ0rsh/3, which
means that all the encountered mass is accumulated to the shell. (It comes
from Σ0 = 4

3
πr3

shρ0/(4πr
2
sh)).

The mass conservation law in a small area on the surface of the shell is

∂m

∂t
+ (∇, mv) = Avshρ0 , (3.1)

23
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where m is the mass in area A = 4παr2
sh, α is a fixed small fraction of the

sphere. The term on the RHS describes the (uniform) accumulation of mass
due to the supersonic expansion. v denotes a two-dimensional velocity of
surface flows connected to perturbations above the stretching of the area due
to expansion of the unperturbed shell. In the following procedure we consider
angular velocity Ω = v/rsh to describe the evolution on the surface of the
shell. With Σ = m/A we obtain continuity equation in a form

∂Σ

∂t
+ 2Σ

vsh

rsh
+ Σrsh(∇,Ω) + rsh(Ω,∇)Σ = vshρ0 . (3.2)

The equation of motion for flows on the shell surface has a form

1

A

d(mv)

dt
= −c2sh∇Σ− Σ∇Φ , (3.3)

where csh is the constant isothermal sound-speed inside the cold shell, which
is a free parameter in this analysis. Φ is the gravitational potential generated
by the mass distribution given in the surface the shell. Using the continuity
equation 3.2, we can rewrite Eq. 3.3 as

rsh
∂Ω

∂t
+ vshΩ + 3vshΩ

Σ0

Σ
+ r2

sh(Ω,∇)Ω = −
c2sh
Σ
∇Σ−∇Φ . (3.4)

The gravitational potential Φ is related to the surface density by the
Poisson equation

∇2Φ = 4πGΣδ(r − rsh) , (3.5)

where G is the constant of gravity and δ denotes the delta function.
We assume a small perturbation of the shell surface density Σ1 ≪ Σ0

which evolves due to surface flows given with angular velocity Ω. The per-
turbed hydrodynamic equations 3.2, 3.4 and the perturbed Poisson equation
3.5 have form

∂Σ1

∂t
+ 2Σ1

vsh

rsh
+ Σrsh (∇,Ω) + rsh (Ω,∇) Σ1 = 0 , (3.6)

rsh
∂Ω

∂t
+ r2

sh (Ω,∇)Ω + 4vshΩ− 3vshΩ
Σ1

Σ0

= −
c2sh
Σ0

(1−
Σ1

Σ0

)∇Σ1 −∇Φ1 , (3.7)

∆Φ1 = 4πGΣ1δ(r − rsh) , (3.8)
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where the 1/Σ in Eq. 3.4 was evaluated up to quadratic terms in Σ1:
c2sh
Σ
∇Σ =

c2sh
Σ0

(1− Σ1

Σ0
+ higher order terms ) ∇Σ1, and ∇Σ0 = 0 on the shell surface.

The perturbation of the surface density Σ1 and the angular velocity of
the surface flows Ω can be decomposed into the Fourier series as

Σ1 = Σ10 +
∑

η Σηei(η,Θ)

Ω = Ω0 +
∑

η Ωηei(η,Θ) , (3.9)

where Θ is a positional vector of the 2D angular coordinates in the shell
surface and η denotes a dimensionless wave-vector η = krsh (k is the standard
2D wave-vector in the shell surface). We assume no surface macroscopic flow
through all the considered area which means Ω0 = 0. Further we assume
Σ10 = 0 (all the mass accumulation due to expansion to the ambient medium
is included in Σ0).

Eqs. 3.9 may be inserted to the perturbed Eqs. 3.6 and 3.7. The Fourier
transform of the continuity equation 3.6 is

Σ̇η + Σ0 (−iη,Ω−η) + 2vsh

rsh
Ση +

∑

η′ (−iη′,Ω−η′) Ση−η′

+
∑

η′ (Ωη−η′ ,−iη′) Ση′ = 0 ,
(3.10)

where we used the identity η′ + (η − η′) = η.
The solution of the Poisson equation 3.5 for the case of the thin layer is

∇Φ1 = −2πG
∑

η

Ση
iη

|η|
ei(η,Θ) (3.11)

(see e.g. Binney & Tremaine, 1987). Using this and Eqs. 3.9 we get the
Fourier transform of the equation of motion 3.7 in a form

rshΩ̇η + 4vshΩη −
3vsh

Σ0

∑

η′ Ωη′Ση−η′ . + rsh
∑

η′ (Ωη−η′ ,−iη′)Ωη′

(−iη′,Ω−η′) = −
c2sh

rshΣ0
iηΣη +

c2sh
rshΣ2

0

∑

η′ iη′Ση−η′Ση′ + 2πG iη
|η|

Ση

. (3.12)

3.2 Linear analysis

The Eqs. 3.10 and 3.12 can be solved analytically using the linear terms only.
The complete linear analysis of the gravitational instability of the expanding
shell was also done by Elmegreen (1994). The linearised equations have a
form

Σ̇η + Σ0(−iη,Ω−η) + 2
vsh

rsh
Ση = 0 (3.13)
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rshΩ̇η = −
c2sh

Σ0rsh
iηΣη + 2πG

iη

|η|
Ση − 4vshΩη (3.14)

Angular velocity Ωη can be split in two components parallel and orthog-
onal to the wave-vector η

Ωη = Ωη‖

η

|η|
+ Ωη⊥

η⊥
|η⊥|

, (3.15)

where η⊥ is a vector in the tangential plane, which is perpendicular to the
wave-vector η and |η⊥| = |η|.

We get the set of equations

Σ̇η = −2
vsh

rsh
Ση − iηΣ0Ωη‖ (3.16)

Ω̇η‖ = (i
2πG

rsh
− i

c2shη

Σ0r2
sh

)Ση − 4
vsh

rsh
Ωη‖ (3.17)

Ω̇η⊥ = −4
vsh

rsh
Ωη⊥ , (3.18)

which can be formally written using the linear operator L as





Σ̇η

Ω̇η‖

Ω̇η⊥



 = L





Ση

Ωη‖

Ωη⊥



 . (3.19)

The solution of the set of Eqs. 3.19 is





Σ̇η

Ω̇η‖

Ω̇η⊥



 =





Ση,0

Ωη‖,0

Ωη⊥,0



 exp(ωηt) , (3.20)

where ωη are eigenvalues of the operator L and Ση,0, Ωη‖,0 and Ωη⊥,0 are
initial values of the appropriate quantities.

Eq. 3.18 for the transversal modes decouples from the first two ones and
its solution is the exponential decrease given by the eigenvalue

ω(3)
η = −4

vsh

rsh
. (3.21)

The eigenvalues of the Eqs. 3.16 and 3.17 are

ω(1,2)
η = −

3vsh

rsh
±

√

v2
sh

r2
sh

−
η2c2sh
r2
sh

+
2πGΣ0η

rsh
, (3.22)
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Figure 3.1: The time evolution of the maximum perturbation growth rate ωη,max.
The dynamical quantities rsh, vsh and Σ0 of the shell were obtain from the thin shell
approximation with parameters L = 551 erg/Myr, n0 = 1cm−3 and µ = 1.3 amu.
The sound-speed in the shell csh was 1 km/s.

where η is the magnitude of η. They are time-dependent dispersion relations
of the modes on the shell surface. The real part of ω

(2)
η is always negative, so

it cannot describe the instability (growth of perturbations). Eigenvalue ω
(1)
η

(hereafter ωη), on the other hand, is more physically interesting.
Perturbations grow if ωη is real and positive. The last term with G repre-

sents the influence of gravity, the term with c2sh gives the influence of pressure
and the remaining two terms come from a stretching due to expansion. In
the short-wavelength modes the pressure always dominates making the short-
wavelength perturbations stable. Long-wavelength modes are stabilised by
the stretching, in particular during the initial period of expansion, when rsh
is small and vsh is large. Later, when the shell decelerates and accumu-
lates enough mass, the gravity term dominates intermediate modes between
short-wavelength modes stabilised by pressure and long-wavelength modes
stabilised by stretching.

The maximum perturbation growth occurs at wavenumber

ηmax =
πGΣ0rsh
c2sh

(3.23)

and its rate is

ωη,max = −
3vsh

rsh
+

√

v2
sh

r2
sh

+
π2G2Σ2

0

c2sh
. (3.24)

Fig. 3.1 shows the typical evolution of the maximum perturbation growth
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rate ωη,max. The beginning of the gravitational instability tb can be deter-
mined as the time when ωη,max = 0, i.e. the first mode becomes unstable.
Using the thin shell approximation with analytical solution 2.30 and 2.32 to
obtain the shell parameters rsh, vsh and Σ0 we get

tb =

(
288

25π2G2

)5/14 (
4π

15

)1/7

c
5/7
sh E

−1/7
0 ρ

−4/7
0 , (3.25)

for the shell created by the abrupt energy input and

tb =

(
648

25π2G2

)5/16 (
4π

5

)1/8

c
5/8
sh E

−1/8
0 ρ

−1/2
0 (3.26)

for the continuous energy input case. Converting Eqs. 3.25 and 3.26 to the
astrophysical units we get

tb = 28.0

(
csh

km s−1

)5/7 (
E0

1051 erg

)−1/7 ( µ

1.3 amu

n0

cm−3

)−4/7

Myr (3.27)

and

tb = 28.8

(
csh

km s−1

)5/8 (
L

1051 erg Myr−1

)−1/8 ( µ

1.3 amu

n0

cm−3

)−1/2

Myr .

(3.28)
Whitworth & Francis (2002) have shown that the radial gravitational

force, which decelerates the shell expansion, can prevent the shell from ac-
cumulating enough mass and becoming gravitationally unstable. The very
simple criterion can be obtained by the comparison of the gravitational in-
stability time tb to the time t0, when the radial gravity starts to dominate
(see Eq. 2.40). If tb > t0 the expansion of the shell almost stalls before the
gravitational instability occurs and cannot accrete additional mass to become
unstable. Values of tb and t0 for the various physical parameters are given
by Tab. 3.2. We can see that the condition tb < t0 is fulfilled for models with
csh = 1 and 2 km/s. Using this condition for tb given by Eq. 3.26 we get the
threshold for the energy input rate

L >
4π

5

(
32G

3π

)4 (
648

25π2G2

)5/2

c5 ≈ 2640G−1c5sh . (3.29)

This value should be considered as the lower guess, i.e. the fragmentation
cannot occur if L is smaller. The more detailed analysis (see Whitworth &
Francis, 2002) yields the value of 1 magnitude higher
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n0 t0 tb (L=1,c=1) tb (L=5,c=1) tb (L=1,c=2) tb (L=1,c=3)

10−1 163 91.1 74.5 140 181
100 51.7 28.8 23.6 44.4 57.2
101 16.3 9.11 7.45 14.0 18.1
102 5.17 2.88 2.36 4.44 5.72
103 1.63 0.911 0.745 1.40 1.81
104 0.517 0.288 0.236 0.444 0.572
105 0.163 9.11× 10−2 7.45× 10−2 0.14 0.181
106 5.17× 10−2 2.88× 10−2 2.36× 10−2 4.44× 10−2 5.72× 10−2

Table 3.1: t0 and tB for various combinations of parameters n0, L and csh. t0 and
tb are in Myr, n0 in cm−3, L in 1051 erg/Myr and csh in km/s.

L > 3× 104G−1c5sh . (3.30)

For the shells with sound-speeds 1, 2 and 3 km/s are the threshold values of
energy input rate 0.14, 4.5 and 34 × 1051 erg/Myr, respectively. The high
exponent at csh makes the sound-speed in the shell the crucial parameter: if
it is high (> 2− 3 km/s for HI shells and super-shells), it would be difficult
to find the physically relevant energy source, which can bring the shell to the
gravitationally unstable state.

If the shell is unstable for a certain time, the fragments may form. The
quantity, which represents the state of the fragmentation at a certain wave-
length, is the fragmentation integral, defined by Ehlerová et al. (1997)

If(t, η) ≡

∫ t

tb

ωη(t′)dt′ . (3.31)

The authors consider that the fragments are well developed when If = 1.
Consequently, the fragmentation time tf may be defined as the time when

If(tf , η) = 1 (3.32)

for the first η.

3.3 Solution with quadratic terms

The set of non-linear hydrodynamic equations on surface of the shell can be
solved using the similar procedure as adopted by Fuchs (1996) for the case of
uniformly rotating self-gravitating disks. In this section we suggest the idea
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of the procedure, the complete non-linear analysis can be found in Wünsch
& Palouš (2001).

Nonlinear Eqs. 3.10 and 3.12 can be formally written as





Σ̇η

Ω̇η‖

Ω̇η⊥



 = L





Ση

Ωη‖

Ωη⊥



 +N , (3.33)

where N represents the non-linear terms. We search for a solution of
Eqs. 3.33 as a combination of the eigenvectors of the linear operator L





Ση

Ωη‖

Ωη⊥



 = ξη(t)





Ση

Ωη‖

Ωη⊥





(1)

+

+ψη(t)





Ση

Ωη‖

Ωη⊥





(2)

+ φη(t)





Ση

Ωη‖

Ωη⊥





(3)

, (3.34)

where ξη(t), ψη(t) and φη(t) are time dependent amplitudes of eigenvectors





Ση

Ωη‖

Ωη⊥





(1,2)

=





iηΣ0

−2vsh

rsh
− ω(1,2)

η

0



 (3.35)





Ση

Ωη‖

Ωη⊥





(3)

=





0
0
1



 . (3.36)

There are always four solutions differing in eigenvectors multiplied by ±i
or ±1. We select only solutions with physical relevance given by eigenvectors
3.35. We find orthonormal vectors (Ση,Ωη‖ ,Ωη⊥)(1,2,3) in order that

(Ση,Ωη‖ ,Ωη⊥)(j)





Ση

Ωη‖

Ωη⊥





(j)

= 1

(Ση,Ωη‖ ,Ωη⊥)(j)





Ση

Ωη‖

Ωη⊥





(k 6=j)

= 0, (3.37)

where j, k = 1, 2, 3. The orthonormal vectors are
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(Ση,Ωη‖ ,Ωη⊥)(1) =
(

ω(2)+2V

R

iηΣ0(ω(2)−ω(1))
, 1

(ω(2)−ω(1))
, 0

)

(Ση,Ωη‖ ,Ωη⊥)(2) =
(

ω(1)+2V

R

iηΣ0(ω(1)−ω(2))
, 1

(ω(1)−ω(2))
, 0

)

(Ση,Ωη‖ ,Ωη⊥)(3) = (0, 0, 1)

. (3.38)

We insert Eq. 3.34 into Eq. 3.33, multiply it by the orthonormal vectors
(Eq. 3.38) and obtain a set of equations for amplitudes ξη(t), ψη(t) and φη(t)

ξ̇η = ω(1)ξη −





∂

∂t





Ση

Ωη‖

Ωη⊥





(1)

,
(

Ση,Ωη‖ ,Ωη⊥

)(1)




 ξη

−





∂

∂t





Ση

Ωη‖

Ωη⊥





(2)

,
(

Ση,Ωη‖ ,Ωη⊥

)(1)




ψη (3.39)

+

(

N ,
(

Ση,Ωη‖ ,Ωη⊥

)(1)
)

ψ̇η = ω(2)ψη −





∂

∂t





Ση

Ωη‖

Ωη⊥





(2)

,
(

Ση,Ωη‖ ,Ωη⊥

)(2)




ψη

−





∂

∂t





Ση

Ωη‖

Ωη⊥





(1)

,
(

Ση,Ωη‖ ,Ωη⊥

)(2)




 ξη (3.40)

+

(

N ,
(

Ση,Ωη‖ ,Ωη⊥

)(2)
)

φ̇η = ω(3)φη −





∂

∂t





Ση

Ωη‖

Ωη⊥





(3)

,
(

Ση,Ωη‖ ,Ωη⊥

)(3)




φη

+

(

N ,
(

Ση,Ωη‖ ,Ωη⊥

)(3)
)

, (3.41)

where we denote ω(j) ≡ ω
(j)
η,max.
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The Eq. 3.41 is decoupled from the others and its solution is the decrease
of the initial value of φ. Eqs. 3.39 and 3.40 are coupled through the linear
and non-linear terms. The interaction through the linear terms is weak, since
the coupled linear terms have smaller amplitudes compared to linear terms
and they decrease with time due to their dependence on the time derivatives
of the eigenvectors, which are very small in the later stages of the shell
evolution. The coupling through the non-linear terms leads to the terms of
the third and higher orders, which can be neglected with respect to quadratic
terms. Furthermore, the solution of the Eq. 3.40 has a decreasing character,
because the first term on the right side, which includes the “stable” ω(2),
dominates. The Eq. 3.39 is the most interesting one, because it has ω(1) in
the first linear term, and only the ω(1) can be real and positive, which leads
to the instability.

In analogy to Fuchs (1996) we group together components with real ωη

into wave-packet and take the wavenumber ηmax. Other components are
grouped to the wave-packets of the same width and approximated by the
average wave-numbers. The ξηmax modes grow, the ψηmax and the φηmax modes
descend. Other modes oscillate with decrease.

Demanding η = η′ = |η − η′| = ηmax we obtain from geometrical consid-
eration:

(η − η′±, η
′
±) = −1

2
η2

max (η′±, η) = 1
2
η2

max , (3.42)

where η′+ and η′− are two wave-vectors inclined at angles 60o to the wave-
vector η. It means that ξη wave-packets non-linearly interact with others with
wave-vectors η′±. Using Eqs. 3.22 and 3.42, the Eq. 3.39 can be simplified to
the set of equations

ξ̇ = (iω(2) + A)ξ + Bξ+ξ−
ξ̇+ = (iω(2) + A)ξ+ + Bξξ∗−
ξ̇− = (iω(2) + A)ξ− + Bξξ∗+ ,

where ξ ≡ ξη, ξ+ ≡ ξη+ , ξ− ≡ ξη− , the asterisk denotes the complex conjunc-
tion and

A = −
18rshvshc

2
shΣ̇0γ + 18v2

shc
2
shΣ̇0 + 2r4

shπ
2G2ρ2

0Σ̇0

2Σ0(9v2
shc

2
sh + π2G2ρ2

0r
4
sh)

−

−
18v2

shc
2
shΣ0γ + 2π2G2ρ2

0r
3
shvshΣ0

2Σ0(9v2
shc

2
sh + π2G2ρ2

0r
4
sh)

−

−
−9rshv̇shc

2
shΣ0γ + 9vshv̇shc

2
shΣ0

2Σ0(9v2
shc

2
sh + π2G2ρ2

0r
4
sh)

(3.43)
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Figure 3.2: Left: The evolution of the amplitude of the surface density pertur-
bation in the linear and non-linear case. Right: The spatial distribution of the
surface density of the three interacting modes inclined at an angle 60o.

and

B =
−3π3G3Σ3

0rsh + 8πGΣ0c
2
shvsh

(
vsh

rsh
− γ

)

4c4shγ
, (3.44)

where

γ =

√

v2
sh

r2
sh

+
π2G2Σ2

0

c2sh
. (3.45)

The set of Eqs. 3.43 describes the time evolution of one triplet of the most
interacting modes (η, η+, η−). We solve this set of equations numerically, set-
ting the initial values of ξ, ξ+ and ξ− randomly so, that Σ1/Σ0 = 0.05 at
tb. Fig. 3.2, left panel, shows the time evolution of the amplitude of the
surface density perturbation in one of such solutions. It is compared to the
solution given by the linearised equations and we can see that the differ-
ence is small. Other experiments show that the quadratic terms (included
with the approximation described above) cannot substantially influence the
perturbation growth rate (see Wünsch & Palouš, 2001).

The surface density which corresponds to the triplet of interacting modes
is suggested by Fig. 3.2, right panel. We can see the sixty-degrees symmetry,
expected to appear in more complicated models (or in reality) if the non-
linear analysis works well and the mode interaction is strong enough.

3.4 The mass spectrum of fragments

The linear analysis of the gravitational instability of the expanding shell
yields the dispersion relation ωη(t) (Eq. 3.22), which represents the growth
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Figure 3.3: The mass spectra ξ(m) = dN/dm for various parameters of the shell.

rate of perturbations at mode η. The fragmentation integral If(η, t)
(Eq. 3.31), which is the integral of ωη(t) over the time, determines the state
of fragmentation at a certain mode, i.e. the development of fragments of a
certain size. It can be used to determine the relative number of fragments in
the shell, i.e. the mass spectrum of fragments.

We assume that the number of fragments of the wavelength λ = 2πrsh/η is
proportional to the fragmentation integral If(η, t). The surface of the spheri-
cal shell of radius rsh is able to accommodate r2

sh/λ
2 fragments of wavelength

λ. Therefore, the number of fragments is given by the relation

N ∼
r2
sh

λ2
If(η) =

η2

4π2
If(η) (3.46)

and the number of fragments with wave-numbers from the interval (η, η+dη)
is

dN ∼
η

4π2

(

2dIf(η) + η
dIf(η)

dη

)

dη . (3.47)

The mass m of fragment of the wavelength λ is

m = π

(
λ

4

)2

Σ0 =
π3r2

shΣ0

η2
. (3.48)

We transform Eq. 3.47 using the Eq. 3.48 getting the resulting mass spectrum
in a form
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dN ∼ −
π2r2

shΣ0

4m2

[

If(m)−m1/2dIf(m)

dm

]

dm . (3.49)

We use the thin-shell approximation (Eq. 4.10) with the continuous en-
ergy input to determine the dynamical parameters of the shell rsh, vsh and Σ0.
We numerically integrate ωη for each unstable mode η from the beginning of
the instability at this mode, obtaining the fragmentation integral If(η, t). We
transform it from the dependence on η to the dependence on m at a certain
time. Inserting it to the Eq. 3.49 we obtain the mass spectrum.

The mass spectra of shells with various physical parameters at time
t = 5tb are shown by Fig. 3.3. Their middle- and high-mass parts can be ap-
proximated by the power-law dN/dm ∼ m−α, where α is the mass spectrum
index. The previously described analysis yields

α = 2.3− 2.4 . (3.50)

The physical parameters of the shell determines the mass interval of frag-
ments. The mass mmax of the fastest growing fragments, which appropriates
to the wave-number ηmax, at time tb depends on the parameters as follows

mmax ∼ G−2c
29/8
sh L−1/8n−1/2µ−1/2 . (3.51)

The dependence on the power of the energy source L is weak. The sound-
speed in the shell is more important parameter, but it seems that the physi-
cally possible range of values is relatively narrow (0.3− 3 km/s). The most
important parameter, which determines the mass of the created fragments is
the density of the ambient medium given by parameter n0.

In the low density medium (n0 ∼ 0.1 − 1cm−3), fragments with mass
104−107 M⊙ are created, which corresponds to the typical mass of molecular
clouds in galaxies. On the other hand, the fragments with stellar masses
(10−1− 103) are created in density 106− 107 M⊙, typical for the dense cores
of the molecular clouds, where new stars are formed.

Fig. 3.4, left panel, shows the typical dependence of the mass spectrum
index on time. It relaxes to the value 2.3− 2.4 at time t = 3− 4tb and then
it remains constant.

It is interesting to compare the mass spectrum of the expanding shell
to the mass spectra obtained by similar procedure, but in different physical
situation. For this purpose we use the scale-free instability and the Jeans
instability.

In the case of the scale-free instability the perturbations grow with the
constant rate ω, independently on the wave-number k. The number of frag-
ments of wavelength λ within the volume of radius R is
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Figure 3.4: Left: The time dependence of the mass spectrum index α for shells
with various physical parameters. Right: The mass spectrum of the expanding
shell comparing to the spectra of the scale-free instability and the Jeans instability.

N = ω ×
R3

(λ/4)3
=

8ωR3k3

π3
, (3.52)

where we have used k = 2π/λ. Since ω does not depend on time, we can
use it instead of the fragmentation integral. The mass m of a fragment of
wavelength λ is

m =
4

3
π(λ/4)3ρ =

1

6
π4ρk−3 , (3.53)

where ρ is the density of the homogeneous medium. Combining the Eqs. 3.52
and 3.53 we get

dN =
24ωR3k2

π3
dk = −

4

3
πR3ρωm−2dm . (3.54)

The mass spectrum of the scale-free instability is a power-law dN/dm ∼ m−α

with the mass spectrum index α = 2.
The perturbation growth rate in the case of the Jeans instability is given

by the dispersion relation (see e.g. Binney & Tremaine, 1987)

ω(k) =
√

−c2sk
2 + 4πGρ , (3.55)

where ρ is the density of the medium, cs is the sound-speed in it and G is
the constant of gravity. The appropriate mass spectrum has a form

dN = −
16

9
R3ρm−2

[

−c2s

(
π4ρ

6m

)2/3

+ 4πGρ

]1/2

dm (3.56)

Fig. 3.4, right panel, compares the mass spectrum of the expanding shell
to the spectra of the scale-free instability and the Jeans instability. More
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Figure 3.5: Left: The mass spectrum of Galactic molecular clouds. The dashed
line represents the power-law with slope α = 1.5 (borrowed from Binney & Mer-
rifield, 1998). Right: The universal IMF of stars according to Kroupa (2001). It
can be approximated by multiple-part power-law with slopes α = 0.3 ± 0.7 for
m ∈ (0.01, 0.08) M⊙, α = 1.3 ± 0.5 for m ∈ (0.08, 0.5) M⊙, α = 2.3 ± 0.3 for
m ∈ (0.5, 1.0) M⊙ and α = 2.3± 0.7 for m > 1.0 M⊙.

detailed analysis (see Palouš et al., 2003) shows that the harder spectrum of
the expanding shell is due to the fact that it is the gravitational instability of
the 2D structure (shell) in 3D space and due to the expansion, which destroys
the larger fragments more effectively than the smaller ones.

Finally, we compare the mass spectrum of expanding shells to the ob-
served mass spectrum of GMC and to the IMF of stars. Mass spectrum of
the GMC in the Milky Way is flatter, with mass spectrum index α = 1.5−2.0
(see Fig. 3.5, left panel). It may be due to collisions and merging, which
always decrease the number of low-mass fragments and increase the num-
ber of high-mass fragments changing the slope of the mass spectrum to
less steep. The gravitational instability time tb in the low-density medium
(n0 = 10−1−1 cm−3) is typically 10-100 Myr, which is greater/similar to the
average collisional time-scale of GMC (Tan, 200).

The initial mass function of stars is shown in Fig. 3.5, right panel. Its
shape is similar to the obtained mass spectrum of the expanding shell, with
mass spectrum index α = 2.3 at its high-mass end. This is due to the
fact that the average collisional time of the fragments is longer by factor
101 − 103 than the gravitational instability time tb ∼ 103 − 104 yr and the
potential merging does not play an important role like in the case of GMC
(see Elmegreen & Shadmehri, 2002).
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Chapter 4

The ZEUS code

4.1 Introduction

ZEUS is a widely used code for astrophysical fluid dynamics simulations.
It was written by Stone and Norman (1992), the last official version 3.4.2
was released in August 1995. ZEUS was developed at the Laboratory for
Computational Astrophysics (LCA) which is a joint project of the National
Centre for Supercomputer Applications and the Department of Astronomy of
the University of Illinois at Urbana-Champaign. The source code is available
at http://zeus.ncsa.uiuc.edu:8080/lca intro zeus3d.html and it is distributed
under the royalty free licence.

The code is based on the methods of finite differences and finite volumes,
which are simple, fast and robust. All equations are discretized with the
second order accuracy. An advantage of these techniques is that they can
be easily extended to other physical processes. The basic equations of the
code are written in a covariant form which allows the use of the code in
an arbitrary orthogonal coordinate system (Cartesian, cylindrical and spher-
ical coordinates are predefined). ZEUS also includes modules for solving
magneto-hydrodynamic equations and the radiation transfer equation.

A substantial advantage is sufficiency of good documentation. A detailed
description of the ZEUS code can be found in Stone & Norman, 1992a (HD),
Stone & Norman, 1992b (MHD) and Stone & Norman, 1992c (RTE), these
articles includes also basic tests of the code. The ZEUS3D distribution in-
cludes a User manual (Clarke et al., 1994), other useful information can be
found in Norman & Stone (1994).

ZEUS has also some limitations and drawbacks. Several artificial effects,
e.g. the imprint of the grid to the computation, are discussed in Chapter 6.
Some drawbacks are connected to the technological background of the code.

39
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ZEUS is written in FORTRAN77 which is an old programming language and
is very impractical for such a big project (over 45,000 lines of code) – it is
impossible to define user data structures, exchange of data through the com-
mon blocks is not very transparent, memory cannot be allocated dynamically
and so on. The source code management of ZEUS is another thing which we
have found problematic. The source code of ZEUS is generated automati-
cally from the original code and user change-decks held in separate files. It
makes the orientation in larger changes difficult.

We have also found several bugs in the code, they are described in Sec-
tion 4.11. The patches are available at http://richard.wunsch.matfyz.cz/-
zeus/.

In this chapter we give a brief description of ZEUS and our modifications
and add-ons.

4.2 Basic equations

Although ZEUS is able to solve full set of MHD equations, we only use the
part which solves pure hydrodynamic equations. Therefore, we focus on the
description of the HD algorithm.

HD equations can be written in a following form:

Dρ

Dt
+ ρ∇ · v = 0 (4.1)

ρ
Dv

Dt
= −∇p− ρ∇Φ (4.2)

ρ
D

Dt

(
e

ρ

)

= −p∇ · v (4.3)

where D/Dt denotes the comoving derivative

D

Dt
=

∂

∂t
+ v · ∇ . (4.4)

Dependent variables are mass density ρ, fluid velocity v and internal en-
ergy density e. Φ is the gravitational potential, which can be set externally in
the form of an analytical function or determined from the space distribution
of the mass by the Poisson solver (see Chapter 5). The set of the HD equa-
tions is closed by the equation of state connecting pressure p to the internal
energy density (and the mass density in general). We use the equation of
state of the ideal gas in the form:
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p = (γ − 1)e (4.5)

where γ = 5/3 is a polytropic index.

4.3 The HD algorithm

ZEUS solves the fluid equations using the operator split method. If we have
an equation in a form

∂y

∂t
= L(y) , (4.6)

where operator L can be split into several parts L =
∑n

i=1 Li, we can search
for the solution with the procedure

(y1 − y0)/∆t = L1(y
0)

(y2 − y1)/∆t = L2(y
1)

. . .
(yn − yn−1)/∆t = Ln(yn−1)

. (4.7)

Numerical experiments have shown that such a multistep solution proce-
dure is more accurate than a single integration step based on old data (Stone
& Norman, 1992a, Hawley, et al., 1984 and Norman & Winkler, 1986).

ZEUS solves the Eqs. 4.1 – 4.3 in two substeps, called a source step and a
transport step. In the source step the finite-difference approximation to the
equations:

ρ
∂v

∂t
= −∇p− ρ∇Φ−∇ ·Q (4.8)

∂e

∂t
= −p∇ · v −Q : ∇v (4.9)

is solved, i.e. the fluid velocity is corrected on pressure and gravity forces and
the pressure work is performed on the gas internal energy. Q is the tensor
of the artificial viscosity (see Section 4.5), the colon denotes a double scalar
product of two tensors (A : B =

∑

i,j aijbij in Cartesian coordinates).
In the transport step the set of following integral equations is solved

d

dt

∫

V

ρdV = −

∫

dV

ρ(v − vg) · dS , (4.10)

d

dt

∫

V

ρvdV = −

∫

dV

ρv(v − vg) · dS , (4.11)
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Figure 4.1: The ZEUS grid. The solid lines denote the a-grid, while the dashed
lines denote the b-grid.

d

dt

∫

V

edV = −

∫

dV

e(v − vg) · dS . (4.12)

They describe an advection of mass, momentum and internal energy,
respectively, through the computational mesh. vg denotes the grid velocity
(ZEUS allows the moving grid, however, we do not use this technique). In
ZEUS, three methods for solving Eqs. 4.10 – 4.12 are implemented: the
first-order-accurate donor-cell method (Godunov, 1959), the second-order
van Leer method (van Leer, 1977) and the third-order piecewise parabolic
advection (PPA) method (Colella & Woodward, 1984). After some numerical
experiments we have decided to use the van Leer method, because it offers
the best ratio of precision to computational costs.

The finite-difference method is based on the discretization of each depen-
dent variable over the spatial computational domain. Then finite-difference
approximations (algebraic equations) to the differential equations are solved
on this discrete mesh. ZEUS uses a staggered mesh built up of two mutually
shifted grids. The a-grid specifies positions of the zone boundaries while the
b-grid specifies the zone centres. Discrete values of all dependent variables
are stored for each zone. Scalars are stored at the zone centres while compo-
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nents of vectors are stored at the appropriate zone interfaces (see Fig. 4.1).

4.4 The coordinate system

The ZEUS code is designed to work in an arbitrary orthogonal coordinate
system. The particular coordinate system is described by the diagonal metric
tensor with the scale factors (h1, h2, h3). They can be used to write all op-
erators which appear in the dynamic equations in a coordinate-independent
fashion. The scale factors of the three predefined coordinate systems are

Cartesian : (x1, x2, x3) = (x, y, z) , (h1, h2, h3) = (1, 1, 1)

cylindrical : (x1, x2, x3) = (z, r, φ) , (h1, h2, h3) = (1, 1, r) (4.13)

spherical : (x1, x2, x3) = (r, θ, φ) , (h1, h2, h3) = (1, r, r sin θ) .

In general, each scale factor can be a function of all coordinates. However,
in ZEUS, they are supposed to be of the form

h1 = g1 ≡ 1

h2 = f(x1) = g2 (4.14)

h3 = f(x1)f(x2) = g31 g32 ,

in order to reduce the memory requirements and floating point operations.
The new scale factors are defined on both a- and b-grid, so there are six 1D
arrays which define the coordinate system g2ai, g31ai, g32aj, g2bi, g31bi and
g32bj.

The standard way of differencing equations, i.e. replacing derivatives
∂F/∂x with formulas ∆F/∆x, cannot be used with curvilinear coordinates.
The reason is the possibility of large numerical errors when differencing near
the coordinate singularities. This problem can be eliminated by differenc-
ing with respect to coordinate volume rather than coordinate distance. For
instance, if we discretize dynamical equations in spherical coordinates using
the formula

1

r2

∂

∂r
(r2F ) ∼

∆(r2F )

r2∆r
=

r2
iFi − r2

i−1Fi−1

[(ri + ri−1)/2]2(ri − ri−1)
, (4.15)

then near the origin there is a serious discrepancy between this result and
the volume difference formula
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1

r2

∂

∂r
(r2F ) ∼

∆(r2F )

∆(r3/3)
=
r2
iFi − r2

i−1Fi−1

r3
i /3− r

3
i−1/3

, (4.16)

which expresses much better the physical meaning of the original differential
operator. The general method of differencing conservation laws on a non-
Cartesian mesh is described in (Mönchmeyer & Müller, 1989).

In ZEUS, there are introduced the volume factors

Cartesian : dvl1 = ∆x, dvl2 = ∆y, dvl3 = ∆z

cylindrical : dvl1 = ∆z, dvl2 = ∆(r2/2), dvl3 = ∆φ (4.17)

spherical : dvl1 = ∆(r3/3), dvl2 = ∆(− cos θ), dvl3 = ∆φ ,

which are, like the scale factors, defined on both the a- and b-grid. Using
them, the derivatives in the dynamical equations are replaced with differences
as follows:

1

h2h3

∂F

∂x1

→
1

g32

∆F

dvl1
,

1

h3

∂F

∂x2

→
1

g31

∆F

dvl2
,

∂F

∂x3

→
∆F

dvl3
≡

∆F

∆x3

.

(4.18)

4.5 Artificial viscosity

There are two kinds of artificial viscosity in the ZEUS code. The non-linear
Neumann-Richtmyer is used to treat shocks. It is based on an analysis of pla-
nar shocks in one dimension (Neumann & Richtmyer, 1950) and is extended
to multi-dimensions by defining the coefficients in each direction indepen-
dently. The tensor of the artificial viscosity Q is diagonal, composed of
artificial pressures qi defined as

qNR
i =

{
l2i ρ(∂vi/∂xi)

2 if (∂vi/∂xi) < 0
0 otherwise

(4.19)

where li = C2∆xi is a distance over which the artificial viscosity spreads the
shock, and is typically chosen to be C2 = 3. The sensitivity of the artificial
non-linear viscous pressure only to compression ensures the correct entropy
jump across shocks and the correct shock propagation velocity (Neumann &
Richtmyer, 1950). The artificial viscosity defined in this way has a negligibly
small effect away from shocks.
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The second one is the linear artificial viscosity. It is sensitive to both
compression and expansion, the linear artificial viscosity pressures are defined
as

qlin
i = C1ρcs∆vi , (4.20)

where C1 is a constant of order unity and cs is the adiabatic sound-speed
(cs = γp/ρ). The linear artificial viscosity is used to damp oscillations in
stagnant flows (we use it to damp sound-waves propagating in the interior of
the shell).

4.6 Boundary conditions

Boundary conditions are implemented as two layers of ghost zones at each
boundary of the computational domain. They are necessary to determine the
spatial differences of the dependent variables here (two layers are required
for higher order interpolation if the PPA method is used). Values of the
dependent variables in the ghost zones are given by simple, explicit equations
(which, for instance, may connect these value to the values in the adjacent
active zones). In ZEUS, the form of these boundary condition equations can
be chosen as one of the following types independently for each dependent
variable and each boundary:

Reflecting boundary conditions: all zone centred variables and the tan-
gential components of velocity in the ghost zones are set to the values
of the corresponding active zones. The normal component of velocity
is set to zero at the boundary and reflected in the second ghost zone.

Axis of symmetry / central point: the same as previous in Cartesian
coordinates; in cylindrical coordinates Φ-components are inverted at
inner R-boundary (the axis of symmetry); in spherical coordinates θ-
and φ-components are inverted at inner r-boundary (the central point)
and φ-components are inverted at inner and outer θ-boundary (the axis
of symmetry).

Inflow boundary conditions: all dependent variables in the ghost zones
are set to the user defined values (which may be time-dependent).

Outflow boundary conditions: the values of all variables in the ghost
zones are set equal to the values in the corresponding active zones.
This simple implementation of the outflow boundary conditions may
cause the unwanted reflections of sound-waves.
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Periodic boundary conditions: all dependent variables except the nor-
mal component of velocity at the boundary are set to the corresponding
active zones on the opposite side of the grid. The normal component
of velocity at the boundary is computed from the difference equations.

4.7 Time-step control

It can be shown by performing von Neumann stability analysis of the dy-
namical equations (Richtmyer & Morton, 1957) that the time-step must be
limited by the Courant-Friedrichs-Lewy (CLF) condition to maintain stabil-
ity (otherwise artificial short wavelength oscillations occur)

∆t ≤ min
∆x

|v|+ cs
, (4.21)

where v is the local fluid velocity and cs is the adiabatic sound-speed. The
minimum is taken over all grid zones. Physically, it means that the maximum
distance which information can travel in one time-step must be smaller than
a size of a grid zone.

In ZEUS the time-step is computed using the explicit formula

∆t =
C0

max(δt−2
c + δt−2

1 + δt−2
2 + δt−2

3 + δt−2
q )

, (4.22)

where C0 is the safety factor, so called Courant number (it can be chosen
between 0 and 1, typically C0 = 0.5). The sound-speed time-step is defined
as

δtc =
min(∆x1,∆x2,∆x3)

cs
, (4.23)

while fluid velocity time-steps are

δti =
∆xi

vi − vg,i
, where i = 1, 2, 3 . (4.24)

Finally, we need to add the limitation of the time-step due to the artificial
viscosity, the artificial viscosity time-step is

∆t ≤
(∆x)2

4ν
, (4.25)

where ν is the coefficient of the kinematic viscosity. It can be determined by
comparison of artificial viscosity terms to the viscous terms in Navier-Stokes
equations. For Neumann-Richtmyer artificial viscosity we get



4.8. RADIATIVE COOLING 47

10-27

10-26

10-25

10-24

10-23

10-22

10-21

10-20

10-19

101 102 103 104 105 106 107 108 109 1010

Λ
 [e

rg
 c

m
-3

 s
-1

]

T [K]

z = 0 zSun
z = 0.01 zSun
z = 0.1 zSun

z = 1 zSun
z = 10 zSun

z = 100 zSun

Figure 4.2: The used cooling function.

δtq = min

(
∆x1

4C2∆v1

,
∆x2

4C2∆v2

,
∆x3

4C2∆v3

)

(4.26)

where C2 is the constant determining the artificial viscosity strength defined
in section 4.5.

4.8 Radiative cooling

The radiative cooling of the interstellar gas is an important microscopic pro-
cess, which is necessary to take into account, if we want to simulate the thin,
cool and dense shell. The process is initiated by an excitation of atomic,
ionic or molecular transitions during collisions, which is followed by a radia-
tive deexcitation. Then, if the medium is optically thin, the radiated photon
escapes away.

The rate at which the gas loses its energy can be approximated by the
equation

(
de

dt

)

cool

= −ρ2Λ(T, z) , (4.27)
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it depends on the second power of the mass density (transitions are induced
by the collisions) and the cooling function Λ(T, z). It is the complicated
function of temperature T and chemical composition, which is described
by the metalicity z. To calculate the cooling function, it is necessary to
know the collisional excitation cross-sections of included particles as functions
of temperature. The cooling function was computed by many authors, for
instance Shapiro & Moore (1976) or Böhringer & Hensler (1989).

The cooling function implemented in the official distribution of ZEUS is
taken from the work by MacDonald & Bailey (1981), which is based on the
cooling function Shapiro & Moore, 1976. Since we had some problems with
this implementation (the Newton-Raphson iteration did not use to converge
during the fast thermal collapse of the shell), we had to rewrite this part
of the code, so we have decided to use a more up-to-date cooling function.
Fig. 4.2 shows the cooling function we use in the simulations of the expanding
shells. It was created by T. P lewa using the code Cloudy (Ferland, 2000 and
Ferland & Savin, 2003) and it was kindly provided by Prof. Różyczka.

The implementation of the cooling into the HD algorithm means to in-
clude the additional term into the equation for energy 4.3.

ρ
D

Dt

(
e

ρ

)

= −p∇ · v− ρ2Λ(T, z) . (4.28)

The contribution of the cooling term is added in the source substep, which
consists of two subsubsteps following the operator split procedure. In the first
subsubstep, the intermediate value of internal energy en+b is obtained adding
the artificial viscosity dissipation using the difference scheme

en+b − en

∆t
= (Q : ∇v) . (4.29)

The change of the internal energy due to compression/expansion of the
gas is added in the second subsubstep, which in adiabatic case (without
cooling) has a form

en+1 − en+b

∆t
= pn+1/2∇ · v , (4.30)

where the time-centred pressure pn+1/2 = (pn+b+pn+1) is used to maintain the
second-order accuracy of the code. Using the equation of state p = (γ − 1)e,
the Eq. 4.30 can be rearranged to give an explicit expression for en+1

en+1 =
1− (∆t/2)(γ − 1)∇ · v

1 + (∆t/2)(γ − 1)∇ · v
en+b . (4.31)
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Unfortunately, the previous operation is impossible if we include the cool-
ing term. The cooling function depends on temperature, which is a function
of internal energy. If we want to use the time centred internal energy to
calculate temperature and the cooling rate (and we need it to maintain the
second-order accuracy), the only possibility is to search for the solution of
the implicit equation

en+1 − en+b

∆t
= pn+1/2∇ · v− ρ2Λ(T n+1/2, z) (4.32)

numerically, because the cooling function is defined as a table of values.
The gas in the expanding shell cools very quickly, in particular during

the thermal collapse phase. This often caused that the Newton-Raphson
iteration used in the original ZEUS cooling routine did not converge to the
correct solution. Therefore we have changed the routine to use the Brent
algorithm (Press et al., 1992). It should be as fast as the Newton-Raphson
iteration, but the convergence is guaranteed.

Nevertheless, the solution of Eq. 4.32 leads to negative energies in ex-
ceptional cases during the thermal collapse – it is because the slope of the
cooling function changes a lot during one time-step, and the cooling rate in
the central time-point is overestimated. The proper solution of this problem
should be reducing the time-step. However, it would be very ”uneconomi-
cal” to compute the whole domain with the extremely small time-steps due
to problems in several zones. Moreover, we are not interested in the exact
description of the thermal collapse for which we have insufficient spatial reso-
lution anyway. We use the simple work-around: the internal energy in zones,
where the negative energy occurs due to overestimated radiative cooling, is
set to the half of the value at the beginning of the time-step. This ”dirty
trick” must be applied only in a short period (several time-steps) of the ther-
mal collapse. We have checked how it influenced the evolution of the shell.
It seemed that the only effect was a bit slower thermal collapse of the shell.
In the later stage of the shell evolution, there were no differences detected
between the simulation using this trick and the simulation with the reduced
time-step.

4.9 Heating

The real interstellar gas is heated by starlight, cosmic rays, X-rays and other
physical mechanisms. We need to insert this process in our model to maintain
the ambient medium of the shell at some realistic temperature (otherwise it
cools quickly by the radiative cooling). As the ambient medium is not the
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main subject of our interest, we can use very simple approximation assuming
that the heating is proportional to the mass density

(
de

dt

)

heat

= H0ρ , (4.33)

where H0 is the constant. Its value can be determined demanding the cooling
and heating of the ambient medium be in equilibrium

H0ρ0 = ρ2
0Λ(T0) ⇒ H0 = ρ0Λ(T0) , (4.34)

where ρ0 and T0 are density and temperature of the ambient medium. Heat-
ing defined in such way has a negligible effect in the shell, where the density
is high and the cooling dominates. The effect of heating in the shell interior
is also small due to the low density of the gas.

4.10 Additional pressure

The hydrodynamic simulation of the shell with the radiative cooling leads to
the extremely (and unrealistically) thin shell.

Density in the shell is so high and the radiative cooling so effective that
the shell cools below one hundred Kelvins. The low pressure leads to the shell
which is only several grid-zones thick. This thickness is artificial, because the
resolution is usually insufficient to make the shell dense enough to balance
the pressure with its surroundings. However, in reality the magnetic field
and/or the turbulence increase the pressure and thickness of the shell. These
processes have to be accounted for if the pressure in the shell should be
realistic.

We can use the magnetic pressure or the turbulent pressure (or both).
Finally, we have decided to use the turbulent pressure, because the imple-
mentation was easier and the definition of the turbulent pressure was more
suitable for the comparison to the analytical approach.

If the system scales exceed the scale of turbulence, the turbulence can be
included as an additional pressure by defining the effective sound-speed

c2s,eff = c2s +
v2
rms

3
, (4.35)

where vrms is the root mean square velocity of the random motions due to tur-
bulence (e.g. Klessen, 2003 or Chandrasekhar, 1949). The effective turbulent
pressure is defined as

peff = ρc2s,eff . (4.36)



4.11. PATCHES 51

To include the additional pressure into ZEUS we can simply define a
parameter cadd = vrms/3 and add the quantity padd = ρc2add to the thermal
pressure.

We also need to change the definition of the sound-speed time-step
(Eq. 4.23) to the form

δtc =
min(∆x1,∆x2,∆x3)

cs,eff
. (4.37)

The advantage of this approach is that cadd is a free parameter, which can
be compared to parameter csh (sound-speed in the shell) in the analytical
model.

4.11 Patches

Finally, we give a list of patches that correct some bugs and problems in the
ZEUS code. They may be used with the ZEUS v.3.4.2 only and are available
at http://richard.wunsch.matfyz.cz/zeus/.

TEA: There are two possibilities how to handle the energy equation in
ZEUS. The first one is described above (section 4.2), the energy equa-
tion is written for the internal energy, which is also the quantity trans-
ported between the zones. The second possibility is to advect the total
energy and use the energy equation in a form Detot/Dt = 0, where
etot denotes the total energy. The later approach ensures the energy
conservation to the machine roundoff, contrary to the former one, but
negative pressures may occur. In ZEUS v.3.4.2 there is a bug – the
artificial viscosity term is added to the right hand side of the equation
for energy. The patch corrects this problem.

TEA tslice: The routine tslice, which outputs some data, does not work
correctly if the total energy advection is used. We fix it by this patch.

mcdb cool: This corrects the value of the normalisation factor of the cool-
ing function used in the original ZEUS code (MacDonald & Bailey,
1981). The value was underestimated by the factor of ten.

hdf vect: The values of the vector components, which are set on the a-
grid, are written with the b-grid values without any interpolation to
the hdf (Hierarchical Data Format) output files. It is mentioned in
the documentation, so it is not clear, whether it is a bug or a feature.
Nevertheless, we have created the patch, which stores these vector com-
ponents with the correct coordinates.
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neg en: If the total energy advection scheme is used, negative pressures
and internal energies can occur, and if also the cooling is used, it may
lead to the artificial instabilities. We fix this problem by setting the
values of the internal energy in these zones to a small positive value.
This of course violates the energy conservation law, but the deviation
is usually smaller than if the internal energy advection scheme (which
ensures positive internal energies) is used.



Chapter 5

Poisson solver

5.1 Overview of methods

The preceding chapter was devoted to the ZEUS code – the solver of the hy-
drodynamic equations including the effects of radiative cooling, heating and
turbulent pressure. The last unknown variable is the gravitational potential
Φ, which appears on the RHS of the Euler’s equation 4.2.

If we want to know the self-gravity of the system, we need the Poisson
solver – the code, which determines the gravitational potential field from the
spatial distribution of the mass density ρ, solving the Poisson equation

∇2Φ = 4πGρ , (5.1)

where G is the constant of gravity. The Poisson equation is the elliptical
partial differential equation of the second order. The gravitational potential
is determined not only by the mass density ρ, but also by the boundary con-
ditions, e.g. the values of Φ at all boundaries of the computational domain.
This is therefore referred as the boundary value problem.

A lot of numerical methods has been developed to solve the boundary
value problems, especially for elliptical equations as the Eq. 5.1. It is pos-
sible to distinguish two large categories: direct methods and iterative (or
relaxation) methods.

Direct methods solve the Eq. 5.1 exactly in a finite number of arithmetic
steps. The simplest of them is the Gaussian elimination of the system of linear
equations arising if the Eq. 5.1 is differenced on some coordinate grid. This
method is very ineffective and usually cannot be used for the real problems.
More efficient methods are mostly based on the fast Fourier transform (FFT)
or on the method of cyclic reduction. If N is the number of the grid zones,
these methods require O(N logN) arithmetic operations, which is close to

53
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the possible minimum O(N).

Relaxation methods start with an initial guess for a solution, then they
improve this approximation through successive iterations. If the method
works properly, the sequence of approximations converges to the exact so-
lution. Examples of these methods may be Jacobi method or Gauss-Seidel
method and their variants (they are described in Section 5.2.2). Classical
relaxation methods are easy to implement and may be applied to more gen-
eral problems than most direct methods. On the other hand, many of these
methods show some serious limitations. They quickly eliminate oscillatory
(short wavelength, measured in zones of the grid) modes of error, but the
smooth (long wavelength) modes of error converge very slowly. Moreover,
this property become worse and worse as we use finer grids to increase the
resolution. There are many methods that accelerate the convergence rate, for
instance Dynamic Alternating Direction Implicit (DADI), which was used in
the ZEUS2D code, or Conjugate Gradient method. Another example is a set
of Multigrid methods, which evolve from attempts to overcome problems with
the smooth modes. These methods count among the most efficient methods
of solving elliptical equations and even more general problems. They are com-
petitive with the fastest direct methods, but they are more general. Properly
implemented multigrid methods may reach the best possible efficiency in the
number of arithmetic operations O(N).

In view of the fact that we need to solve the Poisson equation in every (or
in almost every) hydrodynamic time-step, there is a good reason to use the
relaxation method. A spatial distribution of the mass density typically does
not change a lot during one time-step, so we can assume that the gravitational
potential we compute is very similar to the gravitational potential from the
previous time-step. Relaxation methods are able to use the solution from
the previous time-step as an initial guess in the actual one, while direct
methods throw all information away and start every time-step from scratch.
Using the solution from the previous time-step can substantially accelerate
the computation. Usually, there are only several iteration steps necessary to
adjust the gravitational potential to a required precision.

At first we tried to port the DADI method from ZEUS2D to ZEUS3D.
It worked acceptably in Cartesian coordinates, but the convergence rate in
spherical coordinates was poor. Finally, we have decided to use the multigrid
method, which should meet all our requirements. Additional reason was
the fact that the algorithm was very elegant and an implementation of the
multigrid method might be fun.
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5.2 Iterative methods

5.2.1 Problem definition

We search for the solution of the Poisson equation, which can be formally
written as

∇2u(x1, x2, x3) = f(x1, x2, x3) . (5.2)

Both potential field u and right hand side f are set on the grid Ω defined as

Ω = {(x1,i, x2,j , x3,k), i ∈ 〈0, L〉, j ∈ 〈0,M〉, k ∈ 〈0, N〉}

ui,j,k = u(x1,i, x2,j , x3,k), fi,j,k = f(x1,i, x2,j, x3,k) . (5.3)

To solve Eq. 5.2, boundary conditions must be specified. For our purpose
Dirichlet or periodic conditions will be appropriate. If Dirichlet boundary
conditions are used, the values in the boundary planes are set to the values,
which must be determined by some external mechanism, e.g. the multipole
expansion.

u0,j,k = uiib,j,k uL,j,k = uoib,j,k

ui,0,k = uijb,i,k ui,M,k = uojb,i,k (5.4)

ui,j,0 = uikb,i,j ui,j,N = uokb,i,j

(uiib,j,k stands for inner i-boundary, uoib,j,k for outer i-boundary, uijb,i,k for
inner j-boundary, etc.). In the case of periodic boundary conditions, the
values in the boundary planes are set to the corresponding values in the
boundary plane on the opposite side of the grid:

u0,j,k = uL−1,j,k uL,j,k = u1,j,k

ui,0,k = ui,M−1,k ui,M,k = ui,1,k (5.5)

ui,j,0 = ui,j,N−1 ui,j,N = ui,j,1

Next step is to determine the finite difference form of the Laplacian op-
erator. It can be written in the ZEUS covariant formalism (see Section 4.4)
as

∇2u =
1

h1h2h3

[
∂

∂x1

(
h2h3

h1

∂u

∂x1

)

+
∂

∂x2

(
h1h3

h2

∂u

∂x2

)

+
∂

∂x3

(
h1h2

h3

∂u

∂x3

)]

(5.6)
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Figure 5.1: The structure of the matrix of the system of linear equations arising
when the 7-point discretization scheme is used for the Poisson equation.

If we replace space derivatives in the Eq. 5.6 by their finite difference
approximation according to the rules described in Section 4.4, we get so
called 7-point discretization of the Poisson equation

a1iui−1,j,k + a2iui+1,j,k + a3jui,j−1,k + a4jui,j+1,k + a5kui,j,k−1 +

+a6kui,j,k+1 + (a7i + a7j + a7k)ui,j,k = fi,j,k , (5.7)

where coefficients a1i – a7k written in a covariant form are

a1i =
g2a2

i g31a2
i

dvl1ai dvl1bi
a2i =

g2a2
i+1 g31a2

i+1

dvl1ai dvl1bi+1

a3j =
g32a2

j

g2b2i dvl2aj dvl2bj
a4j =

g32a2
j+1

g2b2i dvl2aj dvl2bj+1

a5k =
1

g31b2i g32b2j dvl3ak dvl3bk
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a6k =
1

g31b2i g32b2j dvl3ak dvl3bk+1

(5.8)

a7i = −
1

dvl1ai

(
g2a2

i+1 g31a2
i+1

dvl1bi+1

+
g2a2

i g31a2
i

dvl1bi

)

a7j = −
1

g2b2i dvl2aj

(
g32a2

j+1

dvl2bj+1

+
g32a2

j

dvl2bj

)

a7k = −
1

g31b2i g32b2j dvl3ak

(
1

dvl3bk+1
+

1

dvl3bk

)

As the Eq. 5.7 must be fulfilled in each grid zone, it represents a huge set
of linear equations. If N is the number of grid zones, we have the set of N
equations of a type

Au = f , (5.9)

where A is a matrix N × N . Assuming a realistic grid 100 × 100 × 100 we
get the matrix of 1012 elements, if we store each element in double precision,
this matrix would occupy 8 TB in the computer memory. Fortunately, the
matrix is very sparse and it is not necessary to store the whole structure in
the memory. The structure of the matrix A is shown by Fig. 5.1.

Let us define some quantities which are used in relaxation methods. As-
suming v is the computed approximation to the exact solution u, we can
define the algebraic error as

e = u− v . (5.10)

Unfortunately, it is impossible to use it to control the relaxation process,
because it is uncomputable without the knowledge of the exact solution u.
The quantity suitable for measuring how well v approximates u is the residual

r = f −Av . (5.11)

However, it should be used with a caution because although r = 0 if and
only if e = 0 (it comes from the uniqueness of the solution 5.9), sometimes
it may not be true that when |r| is small, |e| is also small.

If we insert Eqs. 5.10 and 5.11 into the linear system 5.9 we get the
residual equation, an important relation between the error and the residual

Ae = r . (5.12)

Alternatively, the relative error ǫ of the current approximation v can be
obtained by rearranging Eq. 5.7 so that
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v′i,j,k =
1

a7i + a7j + a7k
(fi,j,k − a1ivi−1,j,k − a2ivi+1,j,k −

− a3jvi,j−1,k − a4jvi,j+1,k − a5kvi,j,k−1 − a6kvi,j,k+1) (5.13)

and using the formula

ǫ = max
i,j,k

∣
∣
∣
∣

v′i,j,k − vi,j,k

vi,j,k

∣
∣
∣
∣
. (5.14)

5.2.2 Basic iterative schemes

One of the simplest schemes is the Jacobi method. The matrix A of the
linear system 5.9 can be split into a diagonal and lower and upper triangular
matrices as follows

A = D − L− U . (5.15)

The advantage of this decomposition is that the diagonal matrix is easy
to invert. We can rearrange term in the Eq. 5.9 to a form

u = D−1(L+ U)u +D−1f (5.16)

and define the Jacobi iteration matrix

RJ = D−1(L+ U) . (5.17)

One iteration step can be written in a form

v(1) = RJv
(0) +D−1f , (5.18)

where v(0) denotes the current approximation and v(1) is the new, updated
approximation. When all components of v(1) have been computed, the algo-
rithm enters the next step, where v(1) plays the role of v(0). This procedure
is repeated until a demanded precision of the solution is reached (in practice,
it usually means the residual is small enough).

The weighted Jacobi method is a simple modification of the Jacobi
method. The new approximation is v(1) composed of two parts. The first one
is the current approximation v(0) and the second one is the approximation
obtained by the standard Jacobi method. The parameter ω is used to set
weights of these parts

v(1) = [(1− ω)I + ωRJ ]v(0) +D−1f . (5.19)
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Similarly, we can define the weighted Jacobi iteration matrix

RJω = (1− ω)I + ωRJ (5.20)

and write the iteration scheme in a conventional form

v(1) = RJωv
(0) +D−1f . (5.21)

The advantage of the weighted Jacobi method is the possibility of controlling
the rate of relaxation. Convergence is guaranteed for all modes if ω ≤ 1. Val-
ues ω < 1 enable us to accelerate the convergence of high-frequency modes,
although the convergence of low-frequency modes is a bit slower (specially
the best convergence rate of high-frequency modes is achieved if ω = 2/3).
The convergence of the low-frequency is very slow when using standard relax-
ation methods as the (weighted) Jacobi method, and it is extremely difficult
to make it faster. Nevertheless, the idea of super-relaxation, i.e. ω > 1, may
be sometimes useful. Note that we have to take care about the high-frequency
modes whose convergence is not guaranteed in this case.

The (weighted) Jacobi method has two disadvantages. As it computes
all components of the new approximation before using any of them, it needs
double space of memory to store the vector v. The second problem is that
the new information cannot be used as soon as it is available. Both these
problems are solved in the Gauss-Seidel method. It simply overwrites the
values of the approximation vector v as soon as they are computed. In this
case, the original system of equations is written in a form

(D − L)u = Uu + f , (5.22)

which implies

u = (D − L)−1Uu + (D − L)−1f . (5.23)

Using the Gauss-Seidel iteration matrix defined as

RG = (D − L)−1U , (5.24)

the method scheme can be written in a form

v← RGv + (D − L)−1f , (5.25)

where the left arrow stands for direct replacement of the v-values.
The weighted Gauss-Seidel method can be defined in the same way as

the weighted Jacobi method. There exists another important variant to this
method – the red-black Gauss-Seidel method. In this strategy all points of
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the grid are divided in two sets using the chessboard pattern. The red points
are updated in the first substep, the black points in the second one. The
advantage of this approach is that the points may be updated in any order,
which is very useful property in terms of parallel computing. It is due to the
fact that the red points need only the black points for their updating and
vice versa.

5.2.3 The convergence rate

A measure of successfulness of a particular iterative method is its convergence
rate. In this section we suggest how it is defined and connected to the form
of the iteration matrix, specifically we show how it depends on the iteration
matrix spectrum.

At first we form a general iteration scheme. Using the residual Eq. 5.12
and the definition of the algebraic error 5.10 we can write

u− v = A−1r . (5.26)

If we identify v with the current approximation v(0) and u with the new
approximation v(1), an iteration step may be formed as

v(1) = v(0) +Br(0) , (5.27)

where B is an approximation to A−1. The efficiency of the method depends
on the quality of this approximation. The general iteration step 5.27 can be
rewritten in a conventional form

v(1) = Rv(0) +Br(0) = v(0) +B(f − Av(0))

= (I −BA)v(0) +Bf ≡ Rv(0) +Bf (5.28)

where R ≡ I −BA is the general iteration matrix. The m-th iteration has a
form

v(m) = Rmv(0) + Cf (5.29)

where C(f) =
∑m−1

i=0 RiBf represents a series of operations on f .
All iteration method should be designed in the way so that the exact

solution is the fixed point of the iteration, i.e. the iteration does not change
it:

u = Ru + Cf (5.30)
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Subtracting the last equation from the general iteration step 5.28, we get

e(1) = Re(0) (5.31)

and after m iteration steps

e(m) = Rme(0) . (5.32)

Using the elementary property of vector and matrix norms we get the
inequality

||e(m)|| ≤ ||R||m||e(0)|| , (5.33)

which means that the method converges if ||R|| < 1. It can be shown (see
for instance Young, 1971 or Golub & van Loan, 1996) that

lim
m→∞

Rm = 0 if and only if ρ(R) < 0 , (5.34)

where ρ(R) is the spectral radius of the matrix R defined as

ρ(R) = max |λ(R)| , (5.35)

where λ(R) are eigenvalues of the matrix R.
The spectral radius ρ(R) is also called the asymptotic convergence rate

and it represents the worst factor by which the error is reduced with one
iteration step.

The convergence rate also depends on the form of the initial algebraic
error. It can be written as a combination of the eigenvectors wk of the
iteration matrix R

e(0) =
∑

k

ckwk , (5.36)

where ck ∈ R are coefficients at the eigenvectors. After m iteration steps the
error has a form

e(m) = Rme(0) =
∑

k

ckR
mwk =

∑

k

ckλ
m
k (R)wk . (5.37)

In other words, after m iterations, the kth eigenvector in the e(0) expan-
sion has been reduced by a factor of λm

k (R).
If we take the weighted Jacobi method in 1D as an example, the eigen-

values of the iteration matrix RJω are

λk(RJω) = 1− ω sin2

(
kπ

2N

)

, (5.38)
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Figure 5.2: Convergence properties of the 1D weighted Jacobi method. Left:
Relaxation of three smooth modes (k = 1, 3, 6). Right: Eigenvalues of the weighted
Jacobi method. The eigenvalues are always close to 1 for k → 0 – the convergence
of low-frequency modes is poor; high-frequency modes (k > 32) can be eliminated
in the most efficient way if ω = 2/3.

and the corresponding eigenvectors are

wk,j = sin

(
jkπ

N

)

, (5.39)

where j denotes the jth components of the eigenvector wk. We can see
that the eigenvectors are simply the Fourier modes. The eigenvalues, which
describe the convergence rate of that modes, show that the convergence rate
of the smooth modes (with a small k) is close to 1 regardless of the parameter
ω, which means that the convergence of the smooth modes is always very
slow (see Fig. 5.2.3). Unfortunately, this feature is common for all standard
relaxation methods. It can be intuitively understood taking in consideration
the fact that the information about the value at some point can influence only
the values in the neighbour points during one relaxation step (due to 7-point
discretization). Assuming this information must travel the whole wavelength
of the mode of the error to eliminate it, it is clear that it takes many iteration
steps to eliminate the smooth (long wavelength) modes. Moreover, if we
increase the resolution to reach a higher precision, the smooth modes become
effectively longer (measured in the grid zones) and this unwanted feature
becomes worse. Elimination of this behaviour was a great success of the
multigrid methods.

5.2.4 The DADI method

As an example of more advanced relaxation methods we describe the Dy-
namic Alternating Direction Implicit (DADI) method in this section. This
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method is implemented in the ZEUS2D code. We have ported it to ZEUS3D
and used it for experiments in Cartesian coordinates, where it worked satis-
factorily. However, the convergence in spherical coordinates was very slow,
so finally, we have switched to the multigrid method.

The DADI method is an extension of the ADI (Alternating Direction
Implicit) method, which is based on the idea of line relaxation. The matrix
of the linear system 5.9 can be split as follows

A = T − U − L , (5.40)

where T denotes the tridiagonal matrix, U and L are remaining upper and
lower parts. The tridiagonal matrix (like the diagonal one) is very easy to
invert, for instance by the Gaussian elimination (it needs only N arithmetic
steps, where N is a size of the matrix). Otherwise, the method is similar to
the Jacobi method, the new approximation is obtained from the current one
using the formula

v(1) = Rv(0) + T−1f , (5.41)

where R is the iteration matrix defined as

R = T−1(L+ U) . (5.42)

Using the direct solution of the tridiagonal system the ADI method is
able to update the entire line of the 3D grid at once. These lines, parallel to
the particular coordinate axis, are represented by the smaller blocks of the
matrix A along the main diagonal (see Fig. 5.1). The direction of the lines
is given by the order of the linear equations. In order not to make a certain
coordinate favoured, the ADI method cyclically alternates the order of the
linear equations. Thus, new approximation is computed using the procedure

v(a) = R1v
(0) + T−1

1 f

v(b) = R2v
(a) + T−1

2 f (5.43)

v(1) = R3v
(b) + T−1

3 f ,

where R1−3 and T1−3 are iteration and tridiagonal matrices which arise from
the orderings starting along the x1, x2 and x3 coordinate axes.

The DADI method introduces the idea of weighting into the ADI method.
It searches for a steady state solution of the diffusion equation

∂u

∂g
= ∇2u− f , (5.44)
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Figure 5.3: Computation of the gravitational potential of the homogeneous sphere
using the DADI method on the Cartesian grid 50x50x50. The left panel shows the
algebraic error (obtained by comparison to the analytical potential), the right
panel shows the relative error of the Poisson equation. The discretization error
was reached after 300 iterations.

where g is a virtual iteration time with no relation to the dynamical time of
the simulation. Large virtual time-steps are equivalent to the large weight
parameter ω, i.e. the large component of relaxed solution in the new approx-
imation.

The advantage of this approach is that it is possible to maintain the
virtual time-step near the stability margin and do as much super-relaxation
as possible not to break the convergence. Standard techniques for controlling
the time-step of the numerical solution of differential equations can be used
for this purpose.

The change-deck for ZEUS3D v3.4.2 which includes the DADI Poisson
solver into the code is available at http://richard.wunsch.matfyz.cz/zeus/-
chgz.gravity-dadi.

5.3 The multigrid method

5.3.1 Basic ideas

In Section 5.2.3 we have seen that the convergence of the smooth modes is
very slow when standard relaxation methods are used. The quest to find
relaxation methods which eliminate the smooth error modes quickly leads to
the development of the multigrid methods. They are based on two ideas: the
idea of nested iterations and the correction scheme.

Nested iterations:
As the wavelength of the error modes is measured in the grid zones from



5.3. THE MULTIGRID METHOD 65

the point of view of the method, it can be effectively decreased using a
coarser grid. In other words, the smooth modes look less smooth when set
on the coarser grid. It is a good idea, therefore, to start the computation by
relaxation on a coarser grid and then use the result as an initial condition
for the final refinement on a high-precision grid. If we ask how to solve the
problem on the coarser grid in the most efficient way, we find out that it is
a transition to the even coarser grid. If we extend the procedure recursively
we get the idea of nested iterations:

• Relax on Au = f on a very coarse grid to obtain an initial guess for
the next finer grid

.

.

• Relax on Au = f on Ω2h to obtain an initial guess for Ωh

• Relax on Au = f on Ωh to obtain a final approximation to the solution

where Ωh, Ω2h, . . . are the grids with the zone sizes h, 2h, . . . Note that the
relaxations on the coarser grids need substantially less arithmetic operations,
in particular for higher dimensional (2D or 3D) problems.

The previous procedure does not solve the problem what happens if it
reaches the finest grid and there is still a smooth component of the error.
Also, it is not clear how to go back to the coarser grid and do not drop
the details of the solution obtained by the relaxation on the fine grid. The
correction scheme gives the answer.

The correction scheme:
It is based on the solution of the residual Eq. 5.12, which enables us to

obtain an approximation to the algebraic error e from the residual r. In the
next step it can be used to correct the approximation to the solution v. The
two-grid correction scheme can be written in a form

• Relax on Au = f on Ω2h to obtain an approximation vh and compute
the residual r = f −Avh

• Relax on the residual equation Ae = r on Ω2h to obtain an approxima-
tion to the error e2h

• Correct the approximation vh with the error e2h: vh ← vh + e2h .

The next step is to define more precisely the way how to transfer the
problem between the grids.
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5.3.2 Intergrid transfers

We need to transfer vectors (v, r or e) in both directions: from coarser grid
to the finer and from finer grid to the coarser.

The former procedure is generally the interpolation and can be written
in a form

vh = Ih
2hv

2h , (5.45)

where Ih
2h is the interpolation operator. The simplest linear interpolation

is usually sufficient for the multigrid methods. The 1D linear interpolation
operator has a form

Ih
2h =













1
2
1 1

2
1 1

2
1













. (5.46)

The complementary operation, which transfers vectors to the coarser grid,
is called the restriction. Using the restriction operator I2h

h it can be written
in a form

v2h = I2h
h vh . (5.47)

The simplest kind of restriction is the injection in which the coarse-grid
vector takes its values directly from the corresponding fine-grid point, while
other fine-grid points are ignored. An alternative is the full weighting which
includes also the neighbour points of the fine grid. The 1D full weighting
operator has a form

I2h
h =

1

4





1 2 1
1 2 1

1 2 1



 . (5.48)

The linear interpolation and full weighting operators fulfil the important
relation

Ih
2h = c(I2h

h )T , c ∈ R , (5.49)

which is called the variational property and it in general improves the con-
vergence of the method (see Briggs et al., 2000).
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Figure 5.4: Stencils show the weights of the finer-grid points which contribute to
the i/2, j/2, k/2 point of the coarser grid when the restriction is applied. The inter-
polation operator can be obtained as a transposition of the appropriate restriction
operator matrix.

The extension of the previous grid-transfer operators to a higher dimen-
sion is straightforward. For the sake of transparency it is useful to represent
the restriction operator in the form of stencils. They show the weight coef-
ficients of the neighbour points on the fine grid. The stencil form of the 3D
full weighting restriction operator is suggested by Fig. 5.4.

Finally, we give the more precise definition of the coarse grid operatorA2h,
which we need to solve the residual equation on the coarse grid. Using the
interpolation operator the residual equation on the fine grid can be written
in a form

Aheh = AhIh
2hu

2h = rh (5.50)

and by applying the restriction operator I2h
h to both sides of the Eq. 5.50 we

get

I2h
h AhIh

2h
︸ ︷︷ ︸

A2h

u2h = I2h
h rh (5.51)

A definition of the coarse-grid operator

A2h = I2h
h AhIh

2h (5.52)

is also called the Galerkin condition.

5.3.3 Multigrid schemes

Gathering the ideas and techniques from the previous two sections we are
able to introduce the basic multigrid schemes. The recursive usage of the
correction scheme leads us to a definition of the simplest multigrid scheme –
the V-cycle. It can be written in a recursive form as
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vh ← V h(vh, fh, ν1, ν2)

1. Relax ν1 times on Ahuh = fh with the initial guess vh

2. If Ωh = coarsest grid, go to step 4
Else

f2h ← I2h
h (fh −Ahvh)

v2h ← 0

v2h ← V 2h(v2h, f2h, ν1, ν2)

3. Correct vh ← vh + Ih
2hv

2h

4. Relax ν2 times on Ahuh = fh with the initial guess vh

In the first phase it descends down to the coarsest grid doing ν1 relaxation
steps on each level. The system is solved exactly on the coarsest grid and then
the algorithm ascends to the finest grid with ν2 relaxations on each level. In
the relaxations during the first (descending) phase the high-frequency error
modes are eliminated, which is necessary for the interpolation used in the
second phase (very roughly: the interpolation of the error from the coarser
grid 2h gives the poor representation of the real error on the grid h if the
error has a high oscillatory component; see e.g. Briggs et al., 2000 for the
proper discussion of this problem).

The V-cycle can be simply generalised into the whole family of the multi-
grid methods called the µ-cycle. It has a recursive form

vh ←Mµh(vh, fh, µ, ν1, ν2)

1. Relax ν1 times on Ahuh = fh with the initial guess vh

2. If Ωh = coarsest grid, go to step 4
Else

f2h ← I2h
h (fh − Ahvh)

v2h ← 0

v2h ←Mµ2h(v2h, f2h, µ, ν1, ν2) µ times

3. Correct vh ← vh + Ih
2hv

2h

4. Relax ν2 times on Ahuh = fh with the initial guess vh
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Figure 5.5: Basic multigrid schemes on four grid-levels.

The most often used values are µ = 1 (the V-cycle) and µ = 2, which is
called the W-cycle.

Using the idea of nested iteration the V-cycle can be extended into the
full multigrid method (FMG), the most powerful method we describe. A set
of ν0 V-cycles on a certain grid-level is preceded by a set of ν0 coarse-grid
V-cycles in order to give the best initial guess possible. The recursive form
of the FMG is

vh ← FMGh(vh, fh, ν0, ν1, ν2)

1. If Ωh = coarsest grid, set vh ← 0 and go to step 3
Else

f2h ← I2h
h (fh)

v2h ← FMG2h(v2h, f2h, ν0, ν1, ν2)

2. Correct vh ← Ih
2hv

2h

3. vh ← V h(vh, fh, ν1, ν2)

The described multigrid schemes are suggested by Fig. 5.5.

5.3.4 Implementation of the multigrid method

We have created the code Šemı́k – the Poisson solver which uses the multigrid
method. The source code is available at http://richard.wunsch.matfyz.cz/-
semik/. It is written in the C programming language and can be used in
ZEUS (the FORTRAN interface in the form of ZEUS change-deck is included)
or independently as the library of functions.

The code is still in development, so only some of the described multi-
grid algorithms are implemented so far. It works in Cartesian and spherical
coordinates, but the extension to the other orthogonal coordinate systems
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should be easy. The weighted Jacobi and weighted Gauss-Seidel methods
can be used for the relaxation, the line relaxation is also possible. The only
implemented multigrid scheme is the V-cycle.

Fig. 5.6, left panel, shows the asymptotic convergence rate of the multi-
grid solver using the weighted Jacobi method and the Gauss-Seidel method.
We can see that the convergence is substantially faster when Gauss-Seidel
relaxation is used reaching the convergence rate ∼ 0.13, while when Jacobi
method is used the convergence rate is ∼ 0.65.

The beneficial property of the multigrid codes is the independence of the
convergence rate on the wavelength of the error mode. Fig. 5.6, right panel,
illustrates that our code shows this property.
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Figure 5.6: Convergence of the V-cycle V(1,1) on Cartesian grid 64x64x64 when
weighted Jacobi (ω = 2/3) and Gauss-Seidel relaxation is used. Right: Number
of iterations necessary to reduce the error 100x depending on the wavenumber k
of the error. The same V-cycle with the Gauss-Seidel relaxation on the same grid
is compared to the standard red-black Gauss-Seidel relaxation method. While
convergence of the V-cycle almost does not depend on k (it needs 3 – 6 iterations),
the red-black Gauss-Seidel needs more than 1000 iterations to reduce the mode
k = 1 by factor 100.



Chapter 6

Hydrodynamic model of the
shell

In the first section of this chapter we describe the module SHELL which sets
up the problem of the expanding shell in the ZEUS code. The source code
of the module SHELL is available at http://richard.wunsch.matfyz.cz/zeus-
/chgz.shell.

Every numerical model should be carefully tested against analytical or
other numerical models. ZEUS itself was tested by the authors of the code
(Stone et al, 1992). In sections 6.2 – 6.4 we present tests of the SHELL
module and the tests of our extensions described in chapter 4. Section 6.5
shows the tests of the interconnection of the SHELL module with the Poisson
solver.

6.1 The SHELL module

The simulation can be set up either in Cartesian coordinates (the compu-
tational domain is a cube with the shell expanding from its centre) or in
spherical coordinates (the computational domain is a sphere sector). We
fill the whole computational domain with gas of particle density n0, aver-
age molecular weight µ and temperature T0. Spherical expanding shock is
created by inserting the energy into this homogeneous medium. A certain
amount of energy Einit can be inserted initially, energy can be also fed con-
tinuously with rate Eflow. In order to prevent the model from large skips in
hydrodynamic quantities, which can cause numerical difficulties, the energy
is inserted into the area of radius Rinitb (or Rflowb) with the radial distribution
∼ exp(r/Rinit) (or exp(r/Rflow)) (see Fig. 6.1). Variables Rinit, Rinitb, Rflow

and Rflowb can be set in parsecs, centimetres or grid zones depending on the

71
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Figure 6.1: Energy source scheme.

value of parameter runit.

Since our model does not include microscopic processes as evaporation
(and the evaporation of the shell into its interior is the main source of the
mass there), we need to insert the mass artificially. It can be controlled
using variables Minit and Mflow. Similarly, as in the case of energy, the ra-
dial distribution of the mass is controlled by Rinit, Rinitb, Rflow and Rflowb

parameters.

If the mass is inserted into the central zones, the kinetic energy in these
zones is changed. In order to conserve the energy rate given by parameter
Eflow, the internal energy in these zones is corrected appropriately. Addition-
ally, the ratio of the kinetic and internal energy, which changes artificially,
can be influenced by the change of the velocity in these zones. This feature
is controlled by the parameter velsol: if velsol = 0, the velocity is changed

Table 6.1: Parameters of the shell setup.

param. unit param. unit
n0 cm−3 runit –
µ amu velsol –
T0 K vwind km/s
Rinit pc,cm,zones Rflow pc,cm,zones
Rinitb pc,cm,zones Rflowb pc,cm,zones
Einit 1051 erg Eflow 1051 erg/Myr
Minit M⊙ Mflow M⊙/Myr
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Figure 6.2: Simulation of the Sedov problem on the 400x1x1 grid. Left: radial
profiles of the density, velocity and pressure and the relative errors. For the sake of
clarity only every fourth point is plotted. Absolute values at the position of shock
front are: ρ2 = 5.2 mH/cm3, v2 = 94 km/s, p2 = 2.53 · 10−10 dyne/cm2. Right:
time dependence of the shock-front position in ZEUS simulation (+ symbols) vs.
the analytical Sedov solution (line).

in order to conserve the momentum in the zone; if velsol=1, the radial com-
ponent of the velocity is changed to conserve the kinetic energy in the zone,
other components are leaved untouched; velsol=2 means that all components
of the velocity are decreased by factor 1−exp(r/Rflow) in the (0, Rflowb) area;
and in the case velsol=3, the radial component of the velocity is set to the
value vwind, while other components are set to zero. In the later computa-
tions we use velsol = 0, because with this value we get the fastest relaxation
to the correct solution (tested with 1D Sedov and Weaver solutions).

A detailed description of the SHELL module is included in its source
code.

6.2 Expansion of 1D adiabatic bubble

6.2.1 The Sedov problem

The Sedov problem can be used as the simplest test of the SHELL module.
We set up 1D spherically symmetric simulation with the abrupt energy input
(Einit = 1051 erg) into the homogeneous medium with n0 = 1 cm−3, µ =
1.3 amu and T0 = 7000 K (values typical for a single supernovae explosion in a
common galactic ISM). The radial profiles of density, velocity and pressure at
the time t = 105 yr are compared to the analytical Sedov solution given by the
Eq. 2.9 (see Fig. 6.2, left panel). All quantities are in a good agreement with
the analytical solution – relative errors of density and velocity are smaller
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Figure 6.3: The expanding super-shell, simulation on the 400x1x1 grid. Left:
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shows the artificial sound-waves which propagate in the shell interior.

than 2%, the relative error of pressure is a bit higher, it reaches 5% near the
shock. However, this relatively high discrepancy may be caused by a small
horizontal shift of the steep curve – the error in the shock-front position.

The right panel of Fig. 6.2 shows the time dependence of the position
of the shock-front. The evolution of the shock follows almost perfectly the
power-law ∼ t2/5, the relative error of the shock-front position is below 1%.

6.2.2 Expanding adiabatic super-shell

In order to test the behaviour of the model when the continuous energy (and
mass) input is used, we set up the simulation of the expanding super-shell.
The energy is inserted continuously at a rate Eflow = 6.667 · 1051erg/Myr in
the same ISM (in reality it can be e.g. the super-shell created by a powerful
OB association). The mass is inserted at a rate Mflow = 200 M⊙/Myr.

Fig. 6.3, left panel, shows the radial profiles of the density at several stages
of the shell evolution. The positions of the shock front and contact discon-
tinuity are compared to the values given by the Weaver’s semi-analytical
solution (Eqs. 2.14 and 2.18). They are in good agreement, in particular in
the later phase, when the discrepancy is smaller than the three grid-zones
size, which is the scale of the artificial viscosity.

Occasionally, numerical instabilities may lead to artificial sound-waves
propagating in the shell interior (this effect is mentioned in Stone & Norman,
1992; they usually occur in stagnant flows of mass). Here, it is illustrated in
velocity profile in Fig. 6.3, right panel. They can be damped by imposing
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grid Rinitb \ C2 1 3 5 7
200 4% 23.7% 11.5% 21.4% 29.2%
200 8% 24.6% 3.2% 8.7% 13.2%
400 4% 28.8% 3.6% 8.0% 12.2%
400 8% 27.1% 6.9% 2.5% 4.9%
800 4% 31.2% 8.9% 2.1% 4.4%
800 8% 28.3% 9.9% 4.0% 1.1%

Table 6.2: The maximum relative error of energy conservation in simulations
with abrupt energy input (n0 = 1 cm−2, µ = 1.3 amu, T0 = 10 K, Einit =
1051 erg) depending on resolution, size of the central area Rinitb and artificial
viscosity given by parameter C2. Temperature of the ambient medium is
unrealistically small to make its internal energy unimportant.

grid Rflowb \ C2 1 3 5 7
200 5% 2.7% 4.3% 6.1% 7.2%
200 10% 4.6% 0.8% 0.1% 1.3%
400 5% 3.0% 3.5% 4.9% 5.6%
400 10% 4.6% 1.3% 0.3% 0.2%
800 5% 3.1% 3.3% 4.4% 5.0%
800 10% 4.3% 1.4% 0.6% 0.2%

Table 6.3: The maximum relative error of energy conservation in simulations
with continuous energy input (n0 = 1 cm−2, µ = 1.3 amu, T0 = 10 K,
Einit = 6.667 · 1051 erg/Myr).

the linear artificial viscosity (Eq. 4.20, C1 = 0.5 is usually a suitable value).

6.3 Energy conservation

In our first simulations we had had serious problems with the conservation of
energy. It had seemed that the ZEUS algorithm did not conserve energy well
if the hydrodynamic variables include large gradients. These problems were
later solved by making the total energy advection scheme work. Nevertheless,
we present our experiments related to the energy conservation in the belief
that they may be useful. In the second part of this section we measure the
internal and kinetic energy in the shell and the shell interior and compare
them to the analytical model.

It should be also remarked that the problem is very insensitive to the



76 CHAPTER 6. HYDRODYNAMIC MODEL OF THE SHELL

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

re
la

tiv
e 

er
ro

r 
in

 e
ne

rg
y

t [Myr]

Rinit=5%, grid=200x1x1

Rinit=5%, grid=800x1x1

Rinit=10%, grid=200x1x1

Rinit=10%, grid=800x1x1

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

re
la

tiv
e 

er
ro

r 
in

 e
ne

rg
y

t [Myr]

Rinit=5%, grid=200x1x1

Rinit=5%, grid=800x1x1

Rinit=10%, grid=200x1x1

Rinit=10%, grid=800x1x1
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error in energy. The quantities that describe the shell evolution (shell radius,
expansion energy and surface density) are only 1/5th power of the energy.
The internal energy (and also the pressure) in the shell is determined in
particular by the radiative cooling, so it should not be affected by small
discrepancies in energy conservation.

We have observed that the critical parameters for the energy conserva-
tion are the artificial viscosity strength, the grid resolution and the size of
the area where the energy is inserted (controlled by Rinitb and Rflowb pa-
rameters). Maximum relative errors of the energy conservation depend on
these parameters, they are shown in Tab. 6.2 (for abrupt energy input) and
Tab. 6.3 (for continuous energy input).

A detailed analysis of the time evolution of error shows that if the artificial
viscosity is too small (C2 < 3), the error is positive (the computation contains
more energy than it should) and it is difficult to make it smaller by varying
other parameters (it even grows with increasing resolution, see Fig. 6.4, left
panel. On the other hand, when the artificial viscosity is high enough, the
error in energy is negative and can be damped by better resolution and/or
larger central area, where the energy is inserted (see Fig. 6.4, right panel). In
the case of the continuous energy input, the evolution of the error is similar
(see Fig. 6.5).

A general method for making the error in energy conservation low is
employing a sufficiently high artificial viscosity (such that we do not get a
positive error), high resolution and a sufficiently large energy source area.

The same experiments can be performed with total energy advection. The
scheme itself ensures the energy conservation to the machine precision, but a



6.3. ENERGY CONSERVATION 77

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

re
la

tiv
e 

er
ro

r 
in

 e
ne

rg
y

t [Myr]

Rflow=5%, grid=200x1x1

Rflow=5%, grid=800x1x1

Rflow=10%, grid=200x1x1

Rflow=10%, grid=800x1x1

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

re
la

tiv
e 

er
ro

r 
in

 e
ne

rg
y

t [Myr]

Rflow=5%, grid=200x1x1

Rflow=5%, grid=800x1x1

Rflow=10%, grid=200x1x1

Rflow=10%, grid=800x1x1

Figure 6.5: Evolution of the relative error in energy conservation in the case of
continuous energy input.

0.001

0.01

0.1

1

10

0 5 10 15 20 25 30 35

ρ 
[m

H
/c

m
3 ]

r [pc]

total

energy

advection

internal

energy

advection

0.0·100

5.0·1049

1.0·1050

1.5·1050

2.0·1050

2.5·1050

3.0·1050

0 0.02 0.04 0.06 0.08 0.1

en
er

gy
 [e

rg
]

t [Myr]

Eint,hole

Ekin,hole

Eint,shell

Ekin,shell

Figure 6.6: Left: simulation of the Sedov problem with the internal and total
energy advection scheme. Right: internal and kinetic energy in the shell and its
interior in the adiabatic expanding shell with the continuous energy input.

small error is generated when the negative values of the internal energy are
eliminated by adding some energy into the affected zones (see section 4.11).
Nevertheless, the error was in all cases negligibly small (< 10−6).

Fig. 6.6, left panel, illustrates the weak dependence of the shell dynamics
on the energy. It compares simulation of the Sedov problem with the inter-
nal energy advection to the one with the total energy advection. Although
the discrepancy in the total energy is almost 8%, the density profile of the
simulation with more energy is shifted only by 1.5%. Otherwise, the density
profiles (and other quantities too) are in a good agreement.

Weaver’s solution predicts the relative amounts of internal and kinetic en-
ergy in the shell and its interior (see section 2.2). It can be used to check the
energy distribution in the numerical model of the expanding shell. Fig. 6.6,
right panel, shows that these amounts of energy remain constant during the
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hole shell
Eint Ekin Etot Eint Ekin Etot

Weaver 45.5% 0.0% 45.5% 32.5% 22.0% 54.5%
ZEUS 45.4% 1.0% 46.4% 28.3% 25.3% 53.6%

Table 6.4: Ratios of energy in the ZEUS model of the expanding adiabatic
shell with the continuous energy input comparing to the Weaver’s semi-
analytical solution.
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Figure 6.7: Left: Mechanism of the thermal instability. Right: cooling function
by MacDonald & Bailey, 1989.

whole shell evolution, which is consistent with the self-similar Weaver’s solu-
tion. Tab. 6.4 compares the energy ratios in our simulations to the Weaver’s
solution. We can see that they are in a good agreement, the most serious dis-
crepancy has the ratio Eint/Ekin inside the shell, which is smaller by several
percent.

6.4 The thermal instability

The thermal instability in the expanding shell can be used as the test of
our implementation of the radiative cooling. The mechanism of the thermal
instability is explained in Fig. 6.7, left panel. As the shell expands, it cools
down and increases its density. When the temperature inside the shell en-
ters the instability region of the cooling function (where dΛ/dT < 0), the
efficiency of the cooling grows with the decreasing temperature and this pos-
itive feedback leads to the quick collapse of the shell into the thin layer. This
process was described by Falle (1981) as the ”catastrophic cooling” for the
case of supernovae remnants.
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In order to compare our simulations with computations of S. A. E. G.
Falle we have to use the same cooling function. Falle has used the cooling
function made by Kafatos, 1973. This cooling function is similar to the one
by MacDonald and Bailey (1989), which is the part of the standard ZEUS
distribution (in fact the MacDonald &Bailey cooling function is based on the
Kafatos cooling function). So we use the original ZEUS cooling function (see
Fig. 6.7, right panel) with the new Brendt algorithm.

We setup the simulation with abrupt energy input Einit = 1051 erg into
the homogeneous medium of particle density n0 = 1 cm−3. After a certain
period the Sedov solution is established, and it remains until the cooling
starts to be important. Falle predicts that it happens at time

tc = 2.7× 104

(
Einit

1051 erg

)0.24

n−0.52
0 yr , (6.1)

when the shell quickly collapses. The expansion velocity of the shock
drops down as the matter flows back toward the contact discontinuity. Later,
when the pressure inside the shell reestablishes equilibrium with its surround-
ings, the expansion velocity grows again, but the expansion does not follow
the Sedov solution vexp ∼ t−3/5 anymore. The collapse of the shell may be so
rapid that additional shocks are created.

Fig. 6.8 shows our simulation of this process. The evolution of the shell
leaves the Sedov solution at the correct time, at the right panel we can see
the drop in the expansion velocity. The Fig. 6.8 is very similar to Fig. 2
and 3 in Falle (1981), although we were not able to model the additional
shocks in the collapsing shell as Falle with his special purpose Lagrangian
hydrocode.
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Francis, 2002; Eq. 2.41.

6.5 1D self-gravitating expanding shell

The last feature of the code which remains to be tested is the self-gravity.
The tests of the Poisson solver itself are presented in section 5.3.4, here we
test only the connection of the Poisson solver with the ZEUS code and the
SHELL module. For this purpose we setup the 1D simulation of the shell
with the self-gravity switched on and compare the result to the analytical
solution given by Whitworth & Francis, 2002 (see section 2.4).

The inclusion of the self-gravity brings the problem of the ambient mat-
ter falling to the centre of the computational domain. It can be shown
that it is almost impossible to find the parameters of the problem (ambi-
ent medium density and temperature, energy rate) for which the shell could
become gravitationally unstable and the ambient matter would be stable
according to Jeans law. In reality the ambient medium does not collapse,
because it contains the magnetic field and turbulence. To solve this problem
we use a simple work-around. In each time-step we detect the shock-front
and set the velocity of the ambient medium (exterior to the shock-front) to
zero. We should remark here that this artificial intervention does not bring
the inconsistency into our model – the aim of this work is to test the an-
alytical models of the gravitational instabilities of expanding shells, we are
not interested in the evolution of the ambient medium, which plays the role
of the boundary condition in our experiments. The analytical models of the
gravitational instabilities which we test assume the homogeneous ambient
medium and this work-around only assures this boundary condition.

In this situation we cannot expect the perfect agreement, because the
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numerical and analytical models are a bit different. If we use the radiative
cooling in the numerical model to get the thin shell, the energy loss decel-
erates the shell expansion, in particular, in the later stage of its evolution.
Furthermore, the analytical model does not include the external pressure,
which is another mechanism decelerating the shell expansion. We can there-
fore expect that the expansion of the shell in the numerical model will be
slower than in the analytical model. On the other hand, when we switch the
radiative cooling off, the shell does not collapse into the thin layer and the
thin-shell approximation used by the analytical model will be poor. We may
expect that the expansion of the shell in the numerical model will be faster
at least for t < t0 – the adiabatic shell expands faster than the thin shell by
factor of 1.16 according to the Weaver’s model (see Section 2.3 – Weaver’s
model of the thin shell).

Fig. 6.9 shows the simulation of the self-gravitating shell with the cooling.
Qualitatively it corresponds to the analytical solution. The transition to the
gravitationally decelerated expansion occurs at the correct time t0 given by
Whitworth & Francis (2002), but the expansion is slower as we have expected.

Fig. 6.10 shows the simulation with the cooling switched off. Initially, the
expansion follows the Weaver’s adiabatic model (with the thick shell and the
expansion faster by factor 1.16), then, at the time t0 the shell is decelerated
by the self-gravity. The expansion for t > t0 is even slower than rsh ∼ t1/5

given by Whitworth & Francis (2002).
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Chapter 7

Self-gravitating shells in 3D

Hydrodynamic computations in 3D are extremely CPU time consuming. In
order to get the results in a reasonable time, several tricks have to be used.

At first, we are not interested in the early stage of the shell evolution
(shell may become gravitationally unstable only when it accretes enough
mass and when it cools down, which may only happen in the later stage of
its evolution), so we can start the 3D computation in the time when the
shell is evolved with spherically symmetric initial conditions obtained by the
1D simulation. The 3D computation can be started in the time given by
the linear analysis of the shell gravitational instability (tb with some safety
factor, because the linear analysis may not be exact, see Eq. 3.26).

We can also utilise the ZEUS ability of working on non-equidistant grids.
The shell interior, in whose detailed structure are we not interested, can be
computed on a radially coarser grid than the remaining area. We define the
coarser grid in the region which is in the shell interior at the beginning of the
3D computation (we do not enlarge this region during the simulation to avoid
problems which may arise when redefining the grid during the computation).
This trick has a positive side effect: using the larger zone sizes effectively
increases the linear artificial viscosity, which helps to damp the unwanted
sound-waves which may arise from numerical instabilities (see section 6.2.2).

The ambient medium, which we want to stay homogeneous, is not neces-
sary to compute at all. In each time-step we may detect the shock-front and
set the border of the computed area several (5-10) grid zones behind it.

The physical time of the simulation (which is proportional to the CPU
time) will be significantly shortened if we restrict our survey to models with
dense ambient medium and high energy input rate, in which the instability
grows relatively fast.

For all that, the computation on a 150x50x50 grid (which is the lowest
reasonable resolution to resolve some fragments) needs approximately 20 days

83
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Figure 7.1: Properties of the the selected 1D simulation. Left: The evolution of
radius rsh and expansion velocity vsh of the shell. Right: The evolution of surface
density Σ0 and sound-speed in the shell csh for various values of the additional
pressure given by cadd.

of CPU time on a single 1.5 GHz processor, which seriously limits the number
of models which can be computed.

The simulations which serve for a determination of the mass spectrum of
fragments are independent and have been run in parallel on the 16-processor
PC cluster of the AsÚ-Praha.

Nevertheless, the situation is getting better, since new faster processors
are developed quickly. We also plan to prepare a parallel version of the nu-
merical model, which may reduce the computational time by one order. A
substantial speed-up may be also gained by using a more advanced hydrody-
namic code, which supports the adaptive mesh refinement technique.

7.1 1D to 3D transition

At first, we prepare 1D simulations to compute an initial phase of the shell
evolution and obtain the initial conditions for the 3D computations. In order
to make the number of computed models small to spare the CPU time, we
have to choose a particular set of parameters for which we will run the next
3D computations.

We may expect that the behaviour of the model in different scales would
be qualitatively same for the following reasons: a) the purely hydrodynamic
model is described by the self-similar solution and the change of scales has no
effect; b) the solution with the gravity scales in a simple way, very similarly to
the scaling of the gravitational instability (see Tab. 3.1); c) the situation with
the radiative cooling is not so simple, but the main effect of the radiative
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1D simulation.

cooling is the thermally collapsed thin shell, whose thickness is controlled
by the artificial parameter cadd, anyway. The radiative cooling also causes
the energy loss from the hole and decelerates the shell expansion, but we
cannot expect that this process can qualitatively change the behaviour of
the gravitational instability.

Therefore, we prepare models with relatively dense ambient medium and
powerful energy source, which makes the gravitational instability time tB
short and perturbation growth rate high. The cadd parameter, which controls
the additional pressure, should be chosen so that the sound-speed in the shell
is as small as possible, but the shell is thick enough (5-7 zones) to be resolved
(see Fig. 7.2). We try the values from the range 0− 1 km/s. Parameters of
the model are shown by the following table

n0 = 103 cm−3 Eflow = 5 · 1051 erg/Myr
µ = 1.3 amu Mflow = 50 M⊙/Myr
T0 = 103 K cadd = 0.5 km/s

Fig. 7.1 shows the evolution of the shell radius, expansion velocity, surface
density and the sound-speed in the shell for various values of cadd parameters
(0, 0.5 and 1 km/s). For the next simulations we take cadd = 0.5 km/s which
is enough to resolve the shell. It leads to the value of csh around 1 km/s
which is a) physically reasonable value; b) small enough to relatively fast
gravitational instability.

Radial profiles of the particle density and the sound-speed are shown by
Fig 7.2. It illustrates the dip of the sound-speed in the dense thin shell.
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perturbation amplitude is 0.48Σ0.

7.2 Perturbation growth in the linear regime

As the first test we try to model the growth of a single mode of initial
perturbations and compare its growth rate to the one given by the linear
analysis (Eq. 3.22).

The beginning of the gravitational instability tb can be determined from
the 1D simulation described in the previous section. The minimum sound-
speed in the shell at time 0.5 − 1Myr (in this time interval we expect the
beginning of the instability) is csh

.
= 1km/s. Using the Eq. 3.26 we obtain

tb = 0.75Myr. With a small safety factor, we start the 3D computation at
time 0.7Myr.

At this time we perturb the density in the shell ρ(r, θ, φ) using the formula

ρ(r, θ, φ) = 0.05ρ1D(r)Y l
m(θ, φ), r ∈ (rcd, rsf) , (7.1)

where ρ1D is a density in the shell in 1D spherically symmetric simulation,
rsh and rcd are radii of the shock-front and the contact discontinuity and
Y l

m(θ, φ) is a spherical harmonic function. We take l = 27 and m = 18 which
creates the mode of the wavenumber close to ηmax(tb) given by the linear
analysis (see Eq. 3.23), ηmax(tb,Σ0, rsh, csh) = 18.5 for the current simulation.
The initial amplitude of this mode is 5%. We use the periodic boundary
conditions at the axial borders.

Fig. 7.3, left panel, shows the distribution of the surface density on the
shell surface at t = tb (initial perturbations), while the right panel of the
figure shows the same quantity later (at t = 3 Myr) when the perturbations
are evolved.
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Figure 7.4: Left: The evolution of the perturbations in the numerical solution
Σ1,num and in the linear analysis Σ1,lin. Right: The perturbation growth rate in
the numerical simulation ωη,num (triangles) and in the linear analysis ωη,lin (line).

Detecting the shell and integrating its mass we obtain the average surface
density Σ0. The average sound-speed in the shell is computed as the density
weighted average of

√

p/ρ over the whole shell. Knowledge of these quantities
enable us to determine the perturbation growth rate ωη,lin(t) according to the
linear analysis (Eq. 3.22). Using this value and inserting it to the equation

dΣ1,lin

dt
= ωη,lin(t)Σ1,lin (7.2)

we get the evolution of the perturbation amplitude Σ1,lin(t), which the lin-
ear analysis predicts for the shell with parameters given by the numerical
model. This function can be compared to the perturbation amplitude in the
simulation given by

Σ1,num(t) =
1

2
(Σmax(t)− Σmin(t)) , (7.3)

where Σmax and Σmin are the maximum and minimum surface densities in
the shell at time t. Fig. 7.4, left panel, shows that both functions are in
a good agreement. The perturbations in the numerical model grow a bit
faster, but this is what we should expect. The main reason is that the linear
analysis assumes the isothermal shell, while the sound-speed in the numerical
simulation depends on the density. The sound-speed in the dense parts of
the shell is smaller due to the more effective cooling, and it leads to the faster
gravitational collapse of these parts. The value of Σ1,lin after t = 3 Myr is
probably wrong, since the shell is so fragmented, that the algorithm which
detects its borders fails, and the parameters rsh, vsh, csh and Σ0 cannot be
determined (as can be seen from the curve of Σ0).
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l m tfrag,lin tfrag,num

18 12 4.10 3.73
22 15 3.92 3.53
27 18 3.72 3.38
32 21 3.57 3.28
36 24 3.44 3.26

Table 7.1: The fragmentation time in the numerical simulation tfrag,num and in
the linear analysis tfrag,num for several modes of initial perturbations.

Similarly, we can determine ωη,num from the perturbation growth given
by Σ1,num as

ωη,num =
d
dt

(Σ1,num)

Σ1,num
(7.4)

and compare it to ωη,lin from the linear analysis as suggested by Fig. 7.4, right
panel. We can see that after relatively high growth rate in the beginning,
which is connected to the initial relaxation of the inserted perturbation, the
growth rate drops to the value slightly less than the value given by the linear
analysis. Then, at t

.
= 2 Myr, it reaches the analytical rate and it is by

approximately 30% higher for the rest of the simulation.

Experiments with other modes η are qualitatively very similar. Fragmen-
tation times, defined as the time tfrag when Σ1(tfrag) = Σ0, in the numerical
simulations and the analytical solutions are compared in Tab. 7.1.

We conclude that the linear analysis and the numerical experiments using
the hydrodynamic code are in a good agreement. The perturbations grow
slightly faster in the numerical solution, but it can be explained by the differ-
ent treatment of the sound-speed in the shell. In the numerical simulation it
decreases in the dense clumps reducing the pressure, which lead to the faster
growth of perturbations. In the analytical solution, on the other hand, it is
constant over the whole shell.

7.3 The mass spectrum of fragments

Having this optimistic results, we can do the next step and start to study the
behaviour of the instability in a more realistic environment, where multiple
different modes are present. In this situation, the modes compete with each
other for the mass – the mode interaction takes effect.
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Figure 7.5: Left: evolution of the perturbation amplitude in the simulation with
the random initial perturbations. Right: distribution of the surface density at
t = 3 Myr in the same simulation.

Σcut Nf Σcut Nf Σcut Nf Σcut Nf

0.045 60 0.050 230 0.053 274 0.056 242
0.046 70 0.051 251 0.0535 274 0.057 231
0.047 96 0.0515 271 0.054 268 0.058 226
0.048 137 0.052 272 0.0545 265 0.059 198
0.049 193 0.0525 263 0.055 259 0.060 167

Table 7.2: Number of fragments detected in the set of simulations with random
initial conditions depending on the value of Σcut.

We setup the simulation with randomly distributed initial perturbations
of the amplitude 5%. The size of the computational domain is 30o × 30o in
axial coordinates, the boundary conditions are periodic.

An evolution of the perturbation amplitude in such simulation is shown
by Fig. 7.5, left panel; the right panel of this figure shows the distribution of
the surface density in the computed part of shell after some evolution (at time
t = 3Myr). We can clearly see that some perturbations have grown such that
their maximum surface density is comparable to the average (unperturbed)
value Σ0 = 0.048 g cm−2. These can be considered to be separate fragments.

Fig. 7.6, left panel, illustrates that the shell remains thin (5-7 zones) and
its shape spherical during the whole evolution. This enables us to use the
surface density for the identification and description of fragments.

We use the simplest approach and define a fragment in the shell surface
as the compact area with the surface density higher than some limit Σcut.
The question is what should be its value. A high value of Σcut causes that
there would be less fragments and they would be too small. A low value, on
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Figure 7.6: The simulation with random initial conditions. Left: distribution of
the particle density in the computational domain at Θ = π/2 at time t = 3 Myr.
It illustrates that the shell remains thin and spherical in the later stage of its
evolution. Right: distribution of the surface density in the shell at the same time.
The minimum of the colour coding scale is set to Σcut,max to highlight the detected
fragments.

the other hand, would lead to merging of fragments – there would be also
less fragments, but they would be too large. We need a value, for which the
fragments are as large as possible, but they do not merge. Experiments show
that it is well fulfilled for Σcut,max for which the highest number of fragments
is detected. In the following analysis we use this value. Nevertheless, we
should check how the resulting spectrum depends on the value of Σcut.

We should also note that the size of fragments is limited by the resolu-
tion (for the small fragments) and by the size of the computational domain
and the fact that the periodic boundary conditions were used (for the large
fragments).

Fragments which consist of only one zone are eliminated from the follow-
ing analysis, because they are rather random fluctuations than the ”real”
fragments. After that, we typically detect 20 - 30 fragments in one simula-
tion. We need approximately ten times more fragments to form a reasonable
mass spectrum, so we run eight simulations, which are identical, except the
pseudorandom-number generator initialisation. Tab. 7.2 shows the number
of fragments detected in such set of simulations depending on the value of
Σcut, so we have Σcut,max = 0.053 g cm−2. The fragments detected using this
Σcut,max are shown by Fig. 7.6, right panel.

We determine the mass of individual fragments and split the mass range
in several bins. Then we count the number of fragments in particular bins
obtaining the mass spectrum suggested by Fig. 7.7, left panel. The mass
spectrum index computed from the three most-right bins is
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Figure 7.7: The mass spectrum of fragments. Left: Fragments were detected in 8
simulations with 30o × 30o computational area. Right: Fragments were detected
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Figure 7.8: Left: The fragments detected in one of the simulations with 60o× 60o

computational area. Right: The mass spectra obtained using different values of
Σcut.

α = 2.4± 0.1 . (7.5)

Since the computational domain is only the part of the shell with periodic
boundary conditions at its borders, the obtained mass spectrum may be cut
artificially at its high mass end. Therefore we set up the simulation in the
computational domain with a double size in each axial direction. It leads
to the artificial cut at the low mass end of the mass spectrum, but it is not
possible to cover whole mass range (more than 3 orders) of created fragments
with the recent numerical model. We determine the Σcut,max and obtain the
mass spectrum suggested by Fig. 7.7, right panel. The mass spectrum index
at the high mass end is

α = 3.0± 0.4 . (7.6)
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Figure 7.9: The mass spectrum of fragments with m > MJ comparing to the
mass spectrum of all detected fragments.

Fig. 7.8, left panel, shows detected fragments in one of such simulations.
The dependence of the mass spectrum slope on the Σcut value is suggested

by Fig. 7.8. The mass spectrum indices for the considered Σcut values are

Σcut[g cm−2] 0.052 0.0525 0.053 0.0535 0.054
α 0.8 2.6 2.4 2.4 3.8

∆α 0.8 0.1 0.1 0.7 1.6

The values of α for Σcut = 0.0525, 0.053, 0.0535 g cm−2 are similar, around
α = 2.5. The high value of α for high Σcut = 0.054 g cm−2 is because we detect
only the central parts of fragments and cut off the borders of fragments, which
contains relatively more mass for the larger fragments than for the smaller
ones. The flatter spectrum for Σcut = 0.052 g cm−2 is due to the merging of
identified fragments – it decreases the number of small fragments in favour
of large fragments (note, that it is the merging in the identification process,
which has nothing to do with the physical merging of the fragments).

Finally, we check if the detected fragments are gravitationally bounded.
We determine the average density ρav and temperature Tav of each fragment
and compute the Jeans mass as follows

MJ = ρ−1/2
av T 3/2

av

(
5kB

GµmH

)3/2 (
3

4π

)1/2

, (7.7)

where kB is the Boltzmann constant.
In the set of 8 numerical simulations we have detected 274 fragments, 53

of them have m > MJ . Fig. 7.9, left panel, shows the mass spectrum made
of such fragments comparing to the spectrum made of all fragments. We can
see that this selection does not influence the slope of the spectrum, which is
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α = 2.2± 0.3 , (7.8)

which is close to the mass spectrum of all fragments given by Eq. 7.5. The
only change is the cut-off at the low mass end, which is at the higher mass for
the gravitationally bounded fragments – the low-mass fragments are usually
not gravitationally bounded.

7.4 Conclusions

We have developed a 3D numerical model of the expanding self-gravitating
shell based on the ZEUS hydrocode. It includes the cooling of the gas by ra-
diation implemented as a cooling function depending on density, temperature
and metalicity of the material. An effect of magnetic field and turbulence in
the shell is treated as the artificial additional pressure.

The gravitational potential is computed by the code Šemı́k developed by
us. It uses the multigrid method – one of the most efficient recent methods.
This code is independent on the rest of the model, and can be used in different
applications.

The numerical model was used to test the linear analysis of the gravi-
tational instability of the expanding shell. Both the solutions are in good
agreement. The numerical model predicts a bit faster growth of the gravi-
tational instability, which can, however, be easily explained by the fact that
the sound-speed in the shell is a dynamical quantity which depends on the
density, while analytical solution assumes the isothermal shell.

The analytical and numerical models were used to obtain the mass spec-
trum of fragments generated by the gravitational instability. Both models
predict that the expanding shell yields the mass spectrum with higher slope
in the high-mass region than other physical models (which yield α = 2).
It may explain higher slope of the initial mass function of stars (α = 2.3);
the much flatter mass spectrum of Galactic molecular clouds (α = 1.5) may
be explained by their merging. The analytically and numerically obtained
spectra are in quite a good agreement, although the accuracy of the numer-
ical spectrum is limited by the resolution of the numerical simulations and
the low number of fragments, which is caused by high CPU-costs of these
simulations.

Future development of our model should consist of three main points.
First of all, physical processes which have not yet been represented within
the model should be taken into account. This concerns in particular the
influence of magnetic field and microscopic processes such as evaporation.
Furthermore, the numerical code has to be improved, e.g. by using AMR
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(adaptive mesh refinement) or/and parallel hydrodynamic code. Finally, the
model can be used in more complicated and realistic environments, which
means using the non-homogeneous ambient medium, galactic differential ro-
tation, etc.
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Palouš, J., 1990, in The Interstellar Disc-Halo Connection in Galaxies, ed.
H. Bloemen, Sterrewacht, Leiden, p. 101
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