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ABSTRACT
In this work we use the radiation–hydrodynamic code TRAMP to perform a two-dimensional
axially symmetric model of the layered disc. Using this model we follow the accumulation
of mass in the dead zone due to the radially varying accretion rate. We find a new type of
instability which causes the dead zone to split into rings. This ‘ring instability’ works due to
the positive feedback between the thickness of the dead zone and the mass accumulation rate.

We give an analytical description of this instability, taking into account the non-zero thick-
ness of the dead zone and deviations from the Keplerian rotational velocity. The analytical
model agrees reasonably well with the results of numerical simulations. Finally, we speculate
concerning the possible role of the ring instability in protoplanetary discs and in the formation
of planets.

Key words: accretion, accretion discs – hydrodynamics – instabilities – Solar system:
formation.

1 I N T RO D U C T I O N

The layered-disc model was proposed by Gammie (1996) to account
for accretion-related phenomena in T Tauri stars. He assumed that
the angular momentum is transported by the magneto-rotational
instability, commonly referred to as the MRI (Balbus & Hawley
1991). However, in the outer disc (beyond ∼0.1 au) the temperature
and the ionization degree is so low that the gas is not well coupled
to the magnetic field and the MRI decays. There, the only parts of
the disc in which the MRI can operate are the surface layers that are
ionized by cosmic rays (ionization due to X-ray quanta emitted by
the central star was also considered; see Glassgold, Najita & Igea
1997). Sandwiched between the active surface layers is an MRI-
free, and, consequently, non-viscous area near the mid-plane of the
disc, commonly referred to as the dead zone.

An interesting property of layered discs is that, in general, the
accretion rate Ṁ is a function of the radius r. The specific form of
this function depends on the mass-weighted opacity. However, Ṁ
increases with r if the opacity does not depend on the density and
increases with the temperature not faster than T2. This is true in the
range 203 < T < 2290ρ2/49 K, where the opacity is dominated by
ice-free grains, and also between 167 and 203 K, where the opacity
drops due to the sublimation of ices as T grows. At temperatures
below 167 K the opacity varies as T2, and the accretion rate is
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constant as a function of r (in this paper we use opacities of a gas
and dust mixture according to Bell & Lin 1994).

When Ṁ increases with r, an annulus centred at r0 receives more
mass per unit time from the outer disc (r > r 0) than that it loses to
the inner disc (r < r 0). As a result, mass accumulates in the dead
zone. Eventually, at one or more locations in the dead zone the sur-
face density becomes so large that the heat released by the accretion
of the accumulated matter pushes the temperature to a level at which
the collisional ionization can restore the coupling between the gas
and the magnetic field. In such case a triggering event, e.g. per-
turbation due to the passage of the companion star, heat flux from
the inner active disc or gravitational instability of the dead zone
(Armitage, Livio & Pringle 2001), could start the accretion and ‘ig-
nite’ the dead zone, making at least part of it active. Consequently,
the rate at which mass is accreted by the central star could increase
dramatically. This mechanism was suggested by Gammie (1996) to
explain the FU Ori type outbursts (Hartmann & Kenyon 1996).

The layered-disc model was further developed by Huré (2002),
who noted that the non-zero thickness of the dead zone is an impor-
tant factor influencing the structure of the active surface layers (this
is because their structure depends on the vertical component of grav-
ity, which in turn depends on the distance from the mid-plane). On
the other hand, detailed magnetohydrodynamic (MHD) simulations
of surface layers performed in a three-dimensional (3D) shearing
box approximation by Fleming & Stone (2003) showed that MRI-
driven, non-axisymmetric density waves can propagate far into the
dead zone. As a result, a purely hydrodynamic (HD) turbulence is
excited there, providing an effective viscosity.
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Our original intention was to study how the evolution of the
dead zone may be affected by the radiative heating from the inner
active part of the disc. To that end, we performed extensive two-
dimensional (axisymmetric) simulations of the evolution of layered
discs, allowing for radiative energy transfer in both radial and verti-
cal directions. Unexpectedly, we found that the dead zone is unstable
in a way that has not been reported before; namely, it tends to de-
compose into rings. In the present paper we illustrate this ‘ring’
instability with numerical simulations, and we discuss it analyti-
cally, providing a physical explanation of the observed phenomena.
The remaining results of our simulations will be reported in a forth-
coming paper.

The outline of the present paper is as follows. In Section 2 we
briefly describe the numerical code and we list the assumptions
underlying our simulations. A layered-disc model where the dead
zone decomposes into rings is presented in Section 3. Section 4
contains an analytical discussion of the ring instability. Finally, in
Section 5 we summarize our results and discuss the effects of the
ring instability in more sophisticated disc models.

2 N U M E R I C A L M E T H O D S

The simulations are performed with the help of the three-
dimensional code TRAMP (Klahr, Henning & Kley 1999). The equa-
tions of continuity

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

momentum conservation

∂ρv

∂t
+ (v · ∇)ρv = −∇ P + ρ∇� + f cen + ∇ · T (2)

and internal energy

cvρ

[
∂T

∂t
+ (v · ∇)T

]
= −P∇ · v+ T : (∇v) (3)

are solved in spherical coordinates (r , θ , φ) using an explicit
operator-splitting method. Here � is the gravitational potential, f cen

is the centrifugal force, T is the viscous stress tensor, ∇v is the rate
of strain tensor composed of derivatives of velocity components, T
is the temperature (assumed to be the same for gas, dust and radi-
ation), cv is the specific heat and the colon denotes a double scalar
product of two tensors. The self-gravity of the disc is neglected, so
that

� = G M�

r
,

where M� is the mass of the central star. We use the equation of state
of the ideal gas

P = kBT

µmH
ρ, (4)

where kB is Boltzmann’s constant, µ is the average molecular weight
of the disc gas and mH is the proton mass.

The radiation transport is treated at the end of each hydrodynamic
time-step by solving the equation

∂Er

∂t
= −∇ · F, (5)

where Er = aT 4 is the radiation energy density and F is the radiative
flux. We adopt

F = − λc

ρκ
∇Er , (6)

where κ is the Rosseland mean opacity for the gas–dust mixture
(Bell & Lin 1994) and λ is the flux limiter used to interpolate
between optically thin and optically thick cases (Levermore &
Pomraning 1981). Equations (5) and (6) are solved implicitly using
an iterative successive over-relaxation (SOR) method. After the con-
vergence has been achieved, the updated temperature is calculated
from the updated radiation energy density. The advection routine for
mass, momentum and energy is based on a second-order monotonic
transport scheme originally introduced by van Leer (1977) and op-
timized by Kley & Hensler (1987). For more details concerning the
numerical code we refer to Klahr et al. (1999).

The models are axially symmetric. We allow for the flow through
the mid-plane of the disc, i.e. we do not impose a reflecting boundary
condition there. Grid points are spaced logarithmically in r, resulting
in a progressively smaller radial extent of grid cells near the centre
of the disc, where their vertical extent is also progressively smaller.
Thus, the shape of grid cells is more nearly regular throughout the
grid.

In the inner active part of the disc, approximate initial distribu-
tions of density and temperature are obtained from analytical α-disc
models (Shakura & Sunayev 1973) assuming a constant temperature
profile in the direction perpendicular to the mid-plane. The outer,
layered part of the disc is initiated with the analytical model of
Gammie (1996). The two solutions merge at the radius rDZ, where
the mid-plane temperature of the layered part reaches 1000 K. The
accretion rate of the layered part at rDZ defines the accretion rate
in the inner active part. Similarly, the surface density of the dead
zone is calculated assuming continuity of the total surface density
at rDZ. Initially, the surface density of the dead zone is constant in r.
The initial rotational velocity is chosen so as to balance the gravity
reduced due to the radial pressure gradient (in a thin disc the rotation
is nearly Keplerian). Other components of velocity are set to zero.

At the outer edge of the disc mass is injected at every time-step
at a fixed rate by the following procedure:

(i) densities and temperatures are copied into the ghost zone from
the adjacent active cells;

(ii) densities in the ghost zone are normalized to the initial surface
density; and

(iii) a uniform radial velocity is set across the ghost zone such
that the accretion rate is the same as in the analytical model.

The angular rotational velocity at both the inner and the outer bound-
ary is extrapolated using an r−3/2 power law. At the inner edge of
the disc, and at the upper and the lower boundary of the grid, a free
outflow boundary condition is imposed. A constant temperature of
10 K is maintained at the upper and the lower boundary.

At each time-step the location of the dead zone is found based on
two conditions that have to be fulfilled simultaneously:

(i) T < T lim, where T lim is the minimum temperature at which
the coupling between the gas and the magnetic field still operates;
and

(ii) 	 > 	 a, where 	 is the column density integrated from the
surface of the disc along a line perpendicular to the mid-plane, and
	 a is the column density ionized by the cosmic rays.

Beyond the dead zone the viscosity coefficient is defined according
to the α-prescription of Shakura & Sunayev (1973)

ν = αcs Ha, (7)

where α is a dimensionless parameter, cs is the speed of sound and
H a is the thickness of the active layer which is determined from
the vertical distribution of density for each radius at each time-step.
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We chose this particular form of the Shakura–Sunyaev prescription
because it is closer to the analytical, vertically averaged model.
Within the dead zone we set ν = 0.

To avoid numerical problems, we introduce a density limiter:
whenever the density falls below ρmin (which may be different for
different models), it is doubled, and the temperature is adjusted so as
to keep the pressure unchanged. This procedure leads to the forma-
tion of a low-density ‘atmosphere’ surrounding the disc. To prevent
it from collapsing on to the disc, we artificially damp vertical and
radial velocities in this region. However, this artificial readjustment
only affects a negligible number of grid cells in the ‘atmosphere’,
and the overall evolution of the disc is not influenced.

3 R E S U LT S O F S I M U L AT I O N S

We obtained a broad sample of models with different parameters,
which will be presented elsewhere. Here we describe a representa-
tive model with ‘canonical’ parameters µ = 2.353, T lim = 1000 K,
	 a = 100 g cm−2 and α = 0.01. Note that at T = 1000 K the ioniza-
tion degree increases by five orders of magnitude due to ionization
of potassium (Umebayashi 1983), and the magnetic Reynolds num-
ber, which is directly proportional to the ionization degree, exceeds
unity. 	 = 100 g cm−2 is the standard stopping column density of
cosmic rays (Umebayashi & Nakano 1981) and 0.01 is a value of
the viscosity parameter often adopted for protoplanetary discs (e.g.
Hawley, Gammie & Balbus 1995). The simulations were performed
on a grid of 256 × 45 points in (r , θ ), with r varying between 0.05
and 0.35 au and θ varying between −5◦ and +5◦. The model was
integrated for 124 yr, i.e. for 600 orbits at the outer edge of the disc.

The initial model is far from thermal equilibrium, however it
quickly relaxes due radiative heat diffusion. The density and mass
flux across the computational domain shortly after the relaxation, at
the beginning of the instability and at the end of the simulation are
shown in Fig. 1: one clearly sees how the dead zone successively
breaks into more and more rings.

As we have not imposed any explicit perturbations, there is a good
reason to believe that the rings result from a linear instability of lay-
ered discs. The mechanism of this instability is illustrated in Fig. 2.
Assume a small axially symmetric enhancement of the surface den-
sity at a radius r0 (which, of course, must be accompanied by an
increase of the dead zone thickness HDZ). As at higher distances
from the mid-plane the vertical component of gravity is stronger,
the active layer (the column density of which is at all times fixed by
cosmic rays) must become thinner at r0.

In the standard prescription, the viscosity coefficient is propor-
tional to the local thickness of the active zone H a (this is motivated
by the idea that H a is a natural scale that limits the maximum size of
the eddies of the MHD turbulence). Therefore, smaller H a results in
a lower viscosity in the elevated part of the active layer. The accre-
tion rate, which depends on the derivative of viscosity (see equation
8 below), decreases at the inner edge of the ring. This causes a bottle-
neck effect in the accretion flow, and the mass accumulates in the
ring. On the other hand, the higher accretion rate at the outer edge
of the ring makes the ring more compact. This positive feedback
between the dead zone thickness and the mass accumulation rate
leads to the formation of the rings.

The rings formed in the simulation are shown in the radial profile
of the surface density in Fig. 3. The accretion rate profile exhibits the
described minima at the inner edges of the rings and maxima at the
outer ones. The plot also shows the deviations from the Keplerian
angular velocity – it can be seen that the inner edges of the rings
rotate at a super-Keplerian velocity. Thus, the rings may capture and

concentrate the radially drifting boulders of meter size, preventing
them from accretion on to the central star (e.g. Klahr & Lin 2000).
Such a concentration of solids in peaks of gas density was observed
by Haghighipour & Boss (2003) and Rice et al. (2004) in the case
of spiral density waves formed by the gravitational instability.

4 A NA LY T I C A L D E S C R I P T I O N
O F T H E R I N G I N S TA B I L I T Y

4.1 Basic assumptions and definitions

Let us consider a layered disc consisting of a dead zone with thick-
ness 2H DZ and two active surface layers with thickness H a each.
The surface layer accretes at a rate

Ṁ = 6πr 1/2 ∂

∂r

(
2	aνr 1/2

)
, (8)

where 	 a is the column density of the surface layer, ν is the kine-
matic viscosity and r is the cylindrical radial coordinate. Equa-
tion (8) is a direct consequence of angular momentum conservation
(Gammie 1996). Assuming that the accretion energy is radiated lo-
cally, we obtain the standard formula for the effective temperature
T e,

9

4
	aν�2 = σ T 4

e , (9)

where σ is the Stefan–Boltzmann constant. In the optically thick
approximation the temperature Ti at the boundary between the dead
zone and the active layer is given by the formula

T 4
i = 3

8
τT 4

e , (10)

where τ = 	 aκ is the optical depth of the active layer and κ is
the Rosseland mean opacity (Hubeny 1990). In general, the opacity
coefficient is a complex function of density and temperature. In a
protoplanetary disc it can be approximated by a set of power laws

κ(ρ, T ) = κ0ρ
a T b, (11)

where the constants κ 0, a and b have different values in differ-
ent opacity regimes (Bell & Lin 1994). At temperatures lower
than 2290ρ2/49 K (i.e. nearly everywhere in a protoplanetary disc)
κ practically does not depend on density, so we assume a = 0.
As before, we assume that the viscosity coefficient is given by
equation (7).

Let δ be the ratio of the total disc half-thickness to the active layer
thickness H a:

δ ≡ Ha + HDZ

Ha
. (12)

From the equation of hydrostatic equilibrium in the direction per-
pendicular do the mid-plane of the disc we obtain an approximate
formula

Pi

ρi
= �2δH 2

a = c2
si , (13)

where Pi, ρ i and csi are, respectively, the pressure, the density and
the speed of sound at the boundary between the dead zone and the
active layer. Combining (13) with equations (9) and (10), and using
(7) with cs = csi we obtain

Ti =
[

3κ0

8

9

4σ

kB

µmH

] 1
3−b

	
2

3−b
a α

1
3−b δ

− 1
2(3−b) �

1
3−b . (14)
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Figure 1. A detail of the computational domain around forming rings at the end of the simulation. Contours indicate density (the levels are 5 × 10−10, 10−9,
2 × 10−9, 5 × 10−9, 10−8, 2 × 10−8 and 5 × 10−8 g cm−3), arrows denote the mass flux (for the sake of lucidity their sizes are proportional to the square root
of the mass flux). The thick dash-dotted line marks the dead zone. The surface of the disc (i.e. the boundary between the disc and the atmosphere) is marked
by the dashed line.
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Figure 2. The upper part of the figure shows the layered-disc structure
with a ring-like perturbation. The higher gravitational force compresses the
elevated part of the active layer, making H a,1 smaller than the unperturbed
value H a,2. Therefore, also ν1 < ν2. The radial profiles of average viscosity
and accretion rate are shown at the bottom of the figure.
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Figure 3. Radial profiles of the surface density 	 (top), the accretion rate
Ṁ (middle) and the difference with respect to the Keplerian angular velocity
� − �0 (bottom).

Inserting equations (9)–(14) into equation (8), we arrive at the fol-
lowing formula for the accretion rate in the active layer:

Ṁ = Mr 1/2 ∂

∂r

[
�

−2+b
3−b δ

−4+b
2(3−b) r 1/2

]
, (15)

where

M = 12π

(
3κ0

8

9

4σ

) 1
3−b

(
kB

µmH

) 4−b
3−b

	
5−b
3−b

a α
4−b
3−b . (16)

In the following, we shall derive an equation which relates the an-
gular rotational velocity � to the thickness of the disc.

Let us assume that the disc is thin (δH a � r ), and neglect the
dependence of � on z (see, e.g., Urpin 1983). We may write

�2 = �2
0 + 1

rρm

∂Pm

∂r
, (17)

where Pm = c2
siρm , ρm and csi are, respectively, the mid-plane values

of pressure, density and speed of sound. Note that because there is no
heat generation in the dead zone, the mid-plane speed of sound is the
same as at the boundary between the dead zone and the active layer
(i.e. at each r the dead zone is isothermal along a line perpendicular
to the mid-plane).

The mid-plane density ρm is given by the vertical hydrostatic
equilibrium

ρm = ρi exp

(
�2 H 2

DZ

2c2
si

)
= ρi exp

[
(δ − 1)2

2δ

]
(18)

and for δ � 1 we have

ρm = ρi exp

(
δ

2
− 1

)
, (19)

where it was assumed that the mass accumulated in the dead zone
is already large (i.e. δ � 1), which allows us to neglect terms of
the second order in 1/δ. Inserting ρm and Pm into equation (17) we
obtain

�2 = �2
0 + c2

si

2r

∂δ

∂r
+ 1

r

∂c2
si

∂r
+ c2

si

ρi r

∂ρi

∂r
. (20)

The speed of sound csi only weakly depends on the disc thickness
(c2

si ∼ δ−1/5 for b = 0.5). The dependence of ρ i on δ is even weaker
(ρ i ∼ δ1/10 for b = 0.5). Therefore, we assume that for a small
perturbation of δ the last two right-hand side terms in equation (20),
which are proportional to derivatives of c2

si and log(ρ i ), are small
compared with the second right-hand side term, which is directly
proportional to the derivative of δ.

The final relation between � and δ is

�2 = �2
0 + c2

si

2r

∂δ

∂r
. (21)

Equations (15) and (21) will be used in the next subsections to derive
the dispersion relation for the perturbations of the disc.

4.2 The linear analysis

Let us perturb δ at a radius r0, assuming that in a small region (r 0 −
R, r 0 + R), R � r , δ consists of the unperturbed part δ0 (which in
that region may be regarded as being independent of r) plus a cosine
term with a wavenumber k,

δ = δ0 + δk cos(k R), (22)

where δk is the amplitude of the perturbation. According to (21), the
angular velocity consists of the Keplerian part �0 and the pressure
correction �1. Neglecting terms of the second order in �1, and using
equation (21) we obtain

�2 = �2
0 + 2�0�1 → �1 = c2

si

4r�0

∂δ

∂r
. (23)
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The first and second derivatives of δ and � are

∂δ

∂R
= −δkk sin(k R)

∂�

∂R
= −3�0

2r
− c2

si

4r�0
δkk2 cos(k R)

∂2δ

∂R2
= −δkk2 cos(k R)

∂2�

∂R2
= 15�0

4r 2
+ c2

si

4r�0
δkk3 sin(k R). (24)

As we only want to obtain a rough idea concerning the growth rate
of the perturbation with a specific k, we may approximate cos(kR)
with 1 and sin(kR) with 0. Then the disc thickness δ, the angular
velocity � and their derivatives are:

δ = δ0 + δk,
∂δ

∂R
= 0,

∂2δ

∂R2
= −δkk2, (25)

� = �0,
∂�

∂R
= −3�0

2r0
− c2

si

4r�0
δkk2,

∂2�

∂R2
= −15�0

4r0
. (26)

As a result of mass accumulation, the surface density of the dead
zone 	̇DZ grows at a rate

	̇DZ = 1

2πr

∂Ṁ

∂r
. (27)

Inserting equation (15) into (27) and using approximations (25) and
(26) we obtain

	̇DZ = M
2πr0

[
3

2

−2 + b

3 − b
�

−5+2b
3−b

0 δ
−4+b
2(3−b)

∂�

∂R

+ −4 + b

2(3 − b)
r0�

−2+b
3−b

0 δ
−10+3b
2(3−b)

∂2δ

∂R2

+ −2 + b

3 − b

−5 + 2b

2(3 − b)
r0�

−8+3b
3−b

0 δ
−4+b
2(3−b)

(
∂�

∂R

)2

+ −2 + b

3 − b
r0�

−5+2b
3−b

0 δ
−4+b
2(3−b)

∂2�

∂R2

]
. (28)

The linearized unperturbed part of the previous equation is

	̇DZ,0 = 3M
8πr 2

0

−2 + b

3 − b

−9 + 4b

3 − b
�

−2+b
3−b

0 δ
−4+b
2(3−b)

0 , (29)

and the linearized equation which describes the evolution of surface
density perturbation with wavenumber k is

	̇DZ,k = M
2πr 2

0

δk

×
[

3

4

−2 + b

3 − b

−4 + b

2(3 − b)

−9 + 4b

3 − b
�

−2+b
3−b

0 δ
−10+3b
2(3−b)

0

+ 3c2
si

4

−2 + b

3 − b

7 − 3b

2(3 − b)
�

−8+3b
3−b

0 δ
−4+b
2(3−b)

0 k2

− −4 + b

2(3 − b)
r 2

0 �
−2+b
3−b

0 δ
−10+3b
2(3−b)

0 k2

]
. (30)

The surface density of the dead zone 	DZ is related to the disc
thickness δ through

	DZ = 2

∫ HDZ

0

ρ(z) dz = 2

∫ HDZ

0

ρm exp

(
−�2z2

2c2
si

)
dz

= 2

∫ HDZ

0

ρi exp

(
�2 H 2

DZ

2c2
si

)
exp

(
−�2z2

2c2
si

)
dz, (31)

where we used the mid-plane density given by (19). The integral
can be evaluated using an error function to yield

	DZ =
√

2πcsi

�
ρi exp

(
δ

2
− 1

)
erf

(
δ − 1√

2δ

)
. (32)

Remembering that δ � 1 we obtain

	DZ = 	a

√
δ exp

(
δ

2
− 1

)
. (33)

Differentiating the previous equation with respect to time leads to a
formula connecting 	̇DZ with δ̇,

	̇DZ = 	a
δ̇
√

δ

2

(
1

δ
+ 1

)
exp

(
δ

2
− 1

)
(34)

the unperturbed part of which and equation (29) can be combined
into an equation

δ̇0 = 3M
4πr 2

0 	a

−2 + b

3 − b

−9 + 4b

3 − b
�

−2+b
3−b

0 δ
−7+2b
2(3−b)

0

× exp

(
1 − δ0

2

)(
1 + 1

δ0

)−1

, (35)

which describes the evolution of the unperturbed disc thickness due
to the accumulation of mass. Next, from equation (30), and equa-
tion (34) written for a specific wavenumber k, we obtain the dis-
persion relation which describes the growth rate of the perturbation
with wavenumber k,

δ̇k = M
πr 2

0 	a
exp

(
1 − δ0

2

)(
1 + 1

δ0

)−1

δk

×
{

3

4

−2 + b

3 − b

−9 + 4b

3 − b
�

−2+b
3−b

0 δ
−7+2b
2(3−b)

0

×
[
− δ0 + 2

2(δ0 + 1)
+ −4 + b

2(3 − b)

1

δ0

]

+ 3c2
si

4

−2 + b

3 − b

7 − 3b

2(3 − b)
�

−8+3b
3−b

0 δ
−7+2b
2(3−b)

0 k2

− −4 + b

2(3 − b)
r 2

0 �
−2+b
3−b

0 δ
−13+4b
2(3−b)

0 k2

}
. (36)

The perturbation growth rate diverges at short wavelengths. This is
because our simple analysis does not include any damping mecha-
nisms. In reality, however, thin rings would diffuse due to the thermal
motion of particles.

Note also that the radial pressure scaleheight cannot become
smaller than the vertical one. Therefore, rings with circular r–z pro-
files should form, which is in agreement with our numerical model
(see Fig. 1).

Fig. 4 shows growth rates of the disc thickness δ in the four
innermost rings. They are compared with the growth rates given
by the dispersion relation (36). The growth rates in the analytical
model are more than one order of magnitude higher. The possible
explanation of this discrepancy can be that the analytical model does
not allow for heat transfer from the ring into the active layer above
it or for convective flows that mix the mass inside the rings. The
radiative transfer in the radial direction may also be important. All
those processes make the dip in the average viscosity shallower and
effectively decrease the growth rate of the instability.

4.3 The influence of stellar irradiation

In this section we estimate how strongly the ring instability is af-
fected by the radiation flux from the star. In the preceding section
the stellar flux was not included self-consistently because the linear
analysis presented there serves as the comparison model for the nu-
merical simulation which does not include irradiation. On the other
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Figure 4. Growth rates of the four innermost rings depending on the un-
perturbed disc thickness δ0 in comparison with growth rates calculated from
equation (36). Growth rates in the numerical simulation were determined by
measuring δ and δ̇(ω = δ̇/δ).

hand, with the irradiation included explicitly the calculations would
become too complex (or just impossible) to perform.

First, we estimate how important the irradiation is for the unper-
turbed disc. We do this by computing the change of temperature at
the boundary between the dead zone and the surface layer (from
which the thickness of the surface layer and the viscosity are deter-
mined).

Stellar heating can be included in equation (10) in the following
way:

T 4
i = 3

8
τT 4

e + W T 4
� , (37)

where T e is the effective temperature resulting solely from the vis-
cous dissipation, T � is the temperature of the stellar photosphere,
and W is the dilution factor which depends on the stellar radius, the
distance from the star and geometry of the disc (Hubeny 1990). For
a conical disc (in which the aspect ratio H/r does not depend on r)
and r � R� we have

W = 2

3π

(
R�

r

)3

(38)

(see, e.g., Ruden & Pollack 1991).
Evaluating the right-hand side terms in equation (37) for our disc

model and typical parameters of a T Tauri star (R� = 3 R
, T �
= 4400 K) we find that the first (viscous) term always dominates.
More susceptible to effects of irradiation are flaring discs, in which
H/r ∼ r γ . The flaring indexγ depends on the model, e.g. a vertically
isothermal model in which the intercepted stellar flux is equal to
the blackbody emission from the disc yields γ = 2

7 (Chiang &
Goldreich 1997). However, even in such model the irradiation term
dominates only for (r � 10 au), where the grazing angle becomes
sufficiently large.

Effects of irradiation may be more important for the ring instabil-
ity itself. The inner edge of a growing ring is more strongly heated
by stellar radiation, because the grazing angle αgr is larger there.
As a result, the temperature and the thickness of the active layer
increase locally, leading to an increased viscosity. Then, the dip in
the accretion rate, which is responsible for the ring growth, becomes
shallower or it may even disappear entirely.

The importance of this effect may be roughly estimated by com-
paring the amplitude of viscosity increase due to stellar irradiation
to the amplitude of viscosity decrease due to the stronger vertical
component of the gravitational force (the latter effect is explained
in Fig. 2).

Let us assume a ring-like perturbation of the disc thickness with
an amplitude δk and a wavelength λ = 2π/k. As the most unstable
wavelength is λmax ∼ δ0 + δk , let us parametrize the perturbation
wavelength by the dimensionless value l = λ/λmax. The grazing
angle at which the stellar radiation strikes the inner edge of the ring
is

αgr ∼ δk

l(δ0 + δk)
+ 2

3π

R�

r
. (39)

Evaluating the dilution factor W = αgr(R�/r )2, inserting it into
equation (37), and combining it with equations (9), (13) and (7) we
obtain the viscosity in a form

ν(δk, δ0, r , l) = N1(r )(δ0 + δk)
−4+b
2(3−b)

+ N2(r )(δ0 + δk)−1/2

[
δk

l(δ0 + δk)
+ N3(r )

]1/4

,

(40)

where

N1(r ) =
(

3κ0

8

9

4σ

) 1
3−b

α
4−b
3−b

(
kB

µmH

) 4−b
3−b

�
−2+b
3−b , (41)

N2(r ) = α

�

kB

µmH

(
R�

r

)−1/2

T� (42)

and

N3(r ) = 2

3π

R�

r
. (43)

Initially, the function ν(δk) always grows as δk increases. How-
ever, depending on the remaining parameters (δ0, r and l), it may
start to decrease and quickly drop below the initial value ν(δk =
0). Therefore, a very small perturbation of the disc thickness is al-
ways stabilized by the stellar irradiation, but if the amplitude of the
perturbation reaches some value, the ring instability may start to
work. This critical value δk,crit [ν(δk,crit) = ν(0)] strongly depends
on l: it is smaller for higher l, where the grazing angle is smaller.
The dependence on the remaining parameters (r and δ0) for l = 3 is
shown by Fig. 5.
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Figure 5. The contours show the critical amplitude δk,crit(δ0,r ) for which
ν(δk,crit) = ν(0). Beyond their endpoints the solution becomes unphysical
(δk > δ0, i.e. the perturbed disc has regions with negative thickness).
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We see that the stabilizing effect of the irradiation may become
unimportant for broad rings (large l), small δ0 (i.e. less mass accu-
mulated in the dead zone) and/or at small radii.

5 D I S C U S S I O N

We described a new instability in layered accretion discs. The ac-
cretion rate in such discs is in general a function of radius. As a
result, mass may accumulate in the non-viscous dead zone near the
mid-plane of the disc. However, a small ring-like perturbation of the
dead zone thickness leads to the deviation of the rotational velocity
which results in a non-uniform accumulation rate for the mass sup-
porting growth of that ring perturbation. This ring instability may
eventually lead to a decomposition of the dead zone into rings.

We observed the formation of such rings in the 2D axially sym-
metric radiation–hydrodynamic simulation of the layered disc. To
illustrate how the instability works, we give its approximate analyt-
ical description. According to the analytical results, the narrowest
rings grow most rapidly. Therefore, we may expect the formation
of radially thin rings where the radial extent will be given just by
the thermal pressure of the gas. The comparison of ring sizes shows
a reasonable agreement between the numerical simulation and the
analytical model.

The irradiation by the central star may substantially decelerate or
even stop the growth of the instability in some regions of the disc.
However, broad rings are less affected, and the effects of irradiation
become less important in thin discs and/or at small distances from
the star. On the other hand, once the innermost ring has developed,
and the flaring index γ is not too high, the disc at larger radii is
shadowed and more rings may develop there. If the disc is truncated
(e.g. by the magnetosphere of the star) the shadowing effect may
also be caused by its inner edge, allowing for an efficient growth of
the instability.

The rings created by this instability may be important in terms
of planet formation, because they can be the places where the solid
particles (gravel and boulders) accumulate. This is because of the
higher rotational velocity at the inner edge of the ring and the lower
one at the outer edge. The drag force which makes the grains move
inwards is smaller at the inner edge of the ring and higher at the
outer edge. The solid particles may merge into larger bodies (plan-
etesimals) necessary for the formation of planets.

Massive rings are subject to a hydrodynamical instability in 3D,
e.g. with respect to non-axisymmetric perturbations (Papaloizou &
Pringle 1984, 1985). This instability occurs if the rotational angular
velocity decreases with radius steeper than r−√

3. In our simulation,
this occurs for the innermost ring at a time of ∼280 yr. In the non-
viscous case such a ring would most likely decay into so-called
‘planets’, i.e. large-scale vortices, as found in numerical simulations
by Hawley (1987), and further investigated by Goodman, Narayan
& Goldreich (1987). The fate of such a ring in 3D viscous hydro-
simulations including the effects of layered accretion still has to be
investigated.

Our model assumes zero viscosity in the dead zone. However,
there are some indications (Fleming & Stone 2003) that even in
the dead zone there might be some turbulence present, induced by
waves originating in the active parts of the disc. In such a case, the
excess of surface density could result in a higher accretion rate in
the rings, and the growth of the rings would be stopped or even they
might not form at all. This issue will be addressed in a forthcoming
paper.
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