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Astronomical Institute, Academy of Sciences of the Czech Republic, Bočńı II 1401, 141 31
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ABSTRACT

We present semi-analytical and numerical models, accounting for the impact

of radiative cooling on the hydrodynamics of the matter reinserted as strong

stellar winds and supernovae within the volume occupied by young, massive

and compact superstellar clusters. First of all we corroborate the location of

the threshold line in the mechanical energy input rate vs the cluster size plane,

found by Silich et al. (2004). Such a line separates clusters able to drive a

quasi-adiabatic or a strongly radiative wind from clusters in which catastrophic

cooling occurs within the star cluster volume. Then we show that the latter,

clusters above the threshold line, undergo a bimodal behavior in which the central

densest zones cool rapidly and accumulate the injected matter to eventually feed

further generations of star formation, while the outer zones are still able to drive a

stationary wind. The results are presented into a series of universal dimensionless

diagrams from which one can infer: the size of the two zones, the fraction of the

deposited mass that goes into each of them and the luminosity of the resultant

winds, for clusters of all sizes and energy input rates, regardless the assumed

adiabatic terminal speed (vA∞
).
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Subject headings: stellar clusters: winds – galaxies

1. Introduction

Upon the formation of a massive and compact superstellar cluster (SSC) the continuous

amount of energy deposited by the massive sources, through winds and supernova explo-

sions (SN), causes a large overpressure. This results from an efficient thermalization of the

deposited kinetic energy through their random collisions. In the adiabatic solution of Cheva-

lier & Clegg (1985; see also the recent numerical calculations of Canto et al. 2000; Raga et

al. 2001 and of Rockefeller et al. 2004, 2005) the overpressure leads to an almost uniform

temperature and density distribution within the star cluster volume causing however a slight

pressure gradient that allows the gas velocity to grow from zero km s−1 at the center to the

sound speed (as) at the cluster edge (r = RSC). The hot gas then freely streams to conform

a stationary wind in which the mass input rate ṀSC equals the amount of matter leaving the

cluster (ṀSC = 4πR2
SCρSCas), and the density (ρw), temperature (Tw) and pressure (Pw)

rapidly approach their asymptotic trends (ρw ∝ r−2, Tw ∝ r−4/3 and Pw ∝ r−10/3) while

the velocity approaches its terminal speed vA∞
= (2LSC/ṀSC)0.5 ≈ 2as; where LSC is the

energy deposition rate.

More recently it has been shown that the winds produced by massive and compact

clusters rather than behaving adiabatically they become strongly radiative (see Silich et al.

2003, 2004). Radiative cooling hardly affects the density and velocity distributions however

it causes the temperature to plummet to T ∼ 104 K at short distances from the star cluster

boundary. This diminishes drastically the sizes of the associated X-ray envelopes predicted by

the adiabatic solution. We have also shown that in the LSC vs RSC plane there is a threshold

line above which radiative cooling becomes catastrophic within the star cluster volume and

this inhibits the development of a stationary wind (see Silich et al. 2004). For these cases

two solutions were proposed (see Tenorio-Tagle et al. 2005a, b). Both of them depart from

the fact that as matter cannot leave the cluster it would have to accumulate within the SSC

volume. One of the solutions assumes that photoionization keeps the temperature ∼ 104 K

and in the absence of gravity accumulation would follow until ṀSC = 4πR2
SCρSCcHII and

a dense isothermal wind can develop. The speed achieved in these winds is several times

the sound velocity (cHII), however smaller than the escape speed for compact and massive

clusters (vesc = (2GMSC/RSC)0.5). Thus the true physical stationary solution for clusters

above the threshold line appears when matter accumulation is balanced by gravitational

instabilities which lead to further stellar generations and thus to positive feedback within

the star cluster volume, when matter reinserted by massive stars is driven into star formation.
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The location of the threshold line has also been shown to be a strong function of the

metalicity of the matter reinserted by winds and supernovae (Tenorio-Tagle et al 2005b)

as this strongly enhances the cooling rate. It depends also on the heating efficiency (see

Silich et al. 2006), or the amount of energy that after full thermalization of the ejecta is not

immediately radiated away, as in the case of close neighboring sources, and thus it can be

evenly spread within the star cluster volume, causing the central overpressure (Stevens &

Hartwell 2003, Melioli & de Gouveia Dal Pino 2004).

Here in section 2 we confirm, through an independent code, the location of the threshold

line and then show that this is in fact not the whole story. Clusters above the threshold

line are here shown to undergo a bimodal behavior in which radiative cooling leads to mass

accumulation and further star formation in their central densest regions while the outer zones

are still able to drive a stationary wind. Section 2 also evaluates the strength of the resultant

winds for clusters above the threshold line as well as the expected rate of star formation

within their cool interiors. Section 3 shows some of our numerical simulations. These fully

confirm the results obtained through our semi-analytical code. Section 4 summarizes our

results and gives our conclusions.

2. The semi-analytic approach

The hydrodynamic equations for the flow between the stagnation point (Rst) and the

edge of the cluster (see Silich et al. 2004) are:
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where uw, ρw, Pw are the velocity, the density and the thermal pressure of the thermalized

matter, qm and qe are the mass and the energy deposition rates per unit volume, respectively,

and Q = neniΛ(T, Z) is the cooling rate. We use the equilibrium cooling function, Λ(T, Z),

for optically thin plasma whose temperature is T and metallicity is Z obtained by Plewa

(1995). In all calculations the metallicity of the plasma was assumed to be solar.

An important difference arises when one considers massive star clusters, those with a

large mechanical energy input rate, which drain immediately a large fraction of the deposited

energy through catastrophic cooling. This happens first within their central, densest regions



– 4 –

and results in an immediate loss of pressure and of the outward pressure gradient. Solutions

for such cases require that the stagnation point (Rst; the point where the expansion velocity,

uw = 0 km s−1) is shifted from the central position r = 0 to a distance, 0 < Rst < RSC , from

the star cluster center. In such cases, the solution of equations (1 - 3) differs from that for

low mass clusters. Indeed, in the catastrophic cooling regime with Rst 6= 0, the constant in

the integral form of the mass conservation equation,

ρwuwr2 =
qmr3

3
+ C, (4)

is not equal to zero. In this, more general case, it depends on the location of the stagnation

point, C = −qmR3
st/3, as at the stagnation point the expansion velocity is zero, uw = 0. The

mass conservation equation (1) is then reduced to
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3uw
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. (5)

Using this equation one can replace terms ρwuw and ρwuwr2 in equations (2) and (3). Taking

the derivative in equation (3) and then replacing dPw/dr from equation (2), we obtain
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where as = (γPw/ρw)1/2 is the speed of sound. Note, that equations (5 - 7) become identical

with equations (7 - 9) from Silich et al. (2004), if Rst = 0. Note also that the relation

between the gas number density and the temperature at the stagnation point remains the

same for all cases (see Silich et al. 2004):

nst =

[

qe − qma2
st/(γ − 1)

Λ(Tst, Z)

]1/2

, (8)

where ast is the sound speed at Rst. Equation (8) indicates that strong radiative cooling

reduces the temperature at the stagnation point below the adiabatic value, TA, which can

be derived from the same equation if one assumes that the cooling rate, n2
stΛ → 0.

2.1. The threshold line

For low mass clusters, the stagnation point (which presents the largest pressure within

the resultant distribution) ought to be at the center and values of temperature and density
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Fig. 1.— Pressure and temperature at the stagnation point. The pressure at the stagnation

point as a function of the gas temperature for clusters with an RSC = 10 pc and different

mechanical luminosities. The stationary wind solution requires a unique pressure for every

cluster indicated here by X symbols. Note that Pst remains below the maximum possible

value for clusters whose LSC is smaller than the threshold mechanical luminosity (see section

2.2) and acquire the maximum value, Pmax, when LSC ≥ Lcrit. The temperature at the

stagnation point, Tst, for clusters above the threshold line, does not change. It is, Tst ≈

107K, if VA∞
= 1000 km s−1. Each curve corresponds to a selected LSC value. The case

corresponding to the critical energy input rate, Lcrit = 4.35× 1041 erg s−1, is marked by the

solid line. Dashed and dotted lines are for clusters above the threshold line with LSC = 1042

and 1043 erg s−1, respectively. The dash-dotted line and the long dashed line are for clusters

below the threshold line with LSC = 1041 and 3 ×1041 erg s−1, respectively.
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of the plasma at such location may be derived through equation (8) by iterating over Tst

until the sonic point (Rsonic) is accommodated at the star cluster surface, Rsonic = RSC , as

described in Silich et al. (2004). One can then calculate the pressure at the stagnation point

(the central pressure in these cases):

Pst = kTst

[

qe − qma2
st/(γ − 1)

Λ(Tst, Z)

]1/2

, (9)

and then integrate numerically equations (5) - (7) outwards from Rst = 0.

As shown in Figure 1 for a 10 pc cluster with an energy input rate equal to 1041 erg

s−1 and an assumed vA∞
= 1000 km s−1 (lowest curve), the pressure value at Rst that sets

the sonic point at the cluster surface, is smaller than the maximum pressure Pmax that

results from all other different values of Tst. Note however, that Pst becomes larger for larger

clusters, approaching continuously the maximum allowed pressure (see equation 9 and Figure

1). Such a behavior occurs until the power of the star cluster, LSC , reaches the threshold

value Lcrit (see Figure 2). For such a cluster the pressure at the stagnation point acquires the

maximum possible value from those allowed by the parameters of the cluster, Pst = Pmax (see

Figure 1, solid line). This selects the temperature (see Figure 1) and the density (equation

8) at the stagnation point and equations 5 - 7 may then be solved numerically. For even

larger energies, the selected Pst has always its largest possible value and Tst remains equal

to the value acquired at the threshold line. However above the threshold line this is not

sufficient to warrant the location of the sonic point at the star cluster surface and the only

possibility to establish a stationary outflow arises from displacing the stagnation point from

the star cluster center.

2.2. Solutions above the threshold line

Figure 2 displays the location of the threshold limit as a function of energy and the

cluster size for two different values of VA∞
(1000 and 1500 km s−1). Thus for clusters at

and above the threshold line the pressure as a function of the temperature at the stagnation

point is to have the maximum value, Pmax, which occurs always at the same temperature

for a given ratio of LSC/ṀSC = V 2
A∞

/2 (see Figure 1). One can then find the parameters of

the injected plasma at the stagnation point by searching through a range of temperatures

(Tst), smaller than the central temperature derived from the adiabatic solution, until the

pressure at the stagnation point has its maximum possible value. Having Pst, Tst, and ρst

one can solve equations 5 - 7 numerically for different positions of the stagnation point. The

proper value of the stagnation point radius is then selected by the condition that the sonic

point lies at the star cluster surface. As shown in Figure 1, for clusters above the threshold
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line, this procedure selects among a broad spectrum of formal solutions, all of them valid

integral curves, the unique single valued solution. This places, for a given set of star cluster

parameters, Rst at the closest possible distance to the center of the cluster.

Figure 3 shows how the fractional radius (Rst/RSC) changes when the selected normal-

ized cluster luminosity, LSC/Lcrit, is larger than 1. Note that this relationship is universal

for clusters of all sizes and masses if one selects the value of Lcrit that corresponds to the

assumed value of VA∞
. The location of Rst asymptotically approaches RSC for increasing

LSC values, implying that the outer cluster regions are to eject the deposited matter in the

form of a high velocity stationary wind even if the mechanical luminosity of the star cluster

exceeds the critical value, LSC > Lcrit. This implies that the isothermal wind solution dis-

cussed in Tenorio-Tagle et al. (2005a), under the assumption of matter accumulation within

the whole cluster volume, is in reality inhibited by the outward expansion of the matter

deposited between Rst and the cluster surface.

2.3. The bimodal hydrodynamic behavior of clusters above the threshold line.

Figure 4 shows the impact of cooling on the resultant winds. The resultant density

profiles are hardly affected by cooling and thus rapidly approach an r−2 distribution (see

Figure 4). However, the further above the threshold line that a cluster may be, the larger the

impact of cooling also on the resultant wind. The temperature profile strongly deviates from

the adiabatic model predictions (Tw ∝ r−4/3) already for clusters with an LSC approaching

the threshold line. For such clusters the temperature falls down and rapidly reaches 104 K at

some distance from the star cluster surface (Figure 4). The process is enhanced for clusters

above the threshold line, causing the temperature to plummet down to 104 K even closer to

the cluster surface (see for example dotted and dashed lines in Figure 4).

Above the threshold line the fraction of the injected matter, Ṁout/ṀSC , that clusters

return to the ISM of the host galaxy, decreases monotonically with the rate of mechanical

energy (see dotted line in the upper panel of Figure 5). The rest of the injected matter,

Ṁin/ṀSC , remains bound within the stagnation radius (solid line in the upper panel of

Figure 5) and thus is due to enhance its density, promoting an even faster cooling, as it

accumulates. The accumulation process is so rapid that soon becomes also stationary, as Ṁ

becomes equal to the star formation rate (see Tenorio-Tagle et al. 2005b). Both fractions

(Ṁout/ṀSC and Ṁin/ṀSC) become universal functions for all clusters if normalized to the

corresponding threshold mechanical luminosity, Lcrit, (see Figure 2).

At the same time, the flux of energy at the star cluster surface, Lout, normalized in a
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Fig. 2.— The threshold line. The threshold line calculated under the assumption of a VA∞

equal to 1000 km s−1 (solid line) and 1500 km s−1 (dotted line). The threshold line separates

two regions in the mechanical energy input rate or SSC mass, vs the cluster size plane.

Clusters below the threshold line lead to stationary winds, either quasi adiabatic (far below

the threshold line) or strongly radiative (as one approaches the threshold line). Clusters

above the threshold line are here shown to produce a bimodal solution in which their densest

inner regions radiate away immediately the deposited energy while the outer zones develop

a strongly radiative stationary wind.
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Fig. 3.— The stagnation radius. For a given set of cluster parameters above the threshold

line, the ratio of the mechanical energy input rate over the corresponding critical energy

input rate (shown in Figure 2), define the location of the stagnation radius able to establish

a stationary outflow. In all cases the stagnation radius is located at the minimum possible

distance from the cluster center.
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similar way, sharply decays for clusters with increasing mechanical luminosity (Figure 5b).

This implies that above the threshold line, the cluster wind carries away only a fraction of

the mechanical energy deposited by supernovae and stellar winds and this is smaller than

that expected from starburst synthesis models (e.g. Leitherer et al. 1999).

Such powerful clusters, with a stagnation point approaching RSC (see section 2.2), have

thus a cool interior and produce also a cool outflow, undetectable in the X-ray regime. This

exposed to the UV radiation from the central cluster may be detected as a low intensity

broad component in the emission spectra associated with massive, compact star clusters.

3. The numerical approach

All numerical calculations here presented are based on the finite difference hydrodynamic

code ZEUS for which the cooling routine has been reimplemented to make it suitable for the

modeling of extremely fast cooling regions in the wind or within the SSC volume. Further,

we solve the implicit form of the energy equation using the Brent algorithm, which is faster

and more stable than the original Newton-Raphson method. Finally, we include the cooling

rate on the computation of the time-step. The amount of energy which can be radiated away

from a given cell during one time-step must be smaller than 10% of its internal energy. The

time-step is decreased to meet this cooling rate condition. However, since this could lead to

extremely small time-steps, what would substantially degrade the overall code performance,

we do not allow the global time-step to decrease below 0.1 times the ”hydrodynamic” time-

step determined by the Courant-Friedrich-Levi criterion. In case a certian cell requires an

even smaller time-step due to the cooling rate condition, we subdivide the time-step even

more. Using such small enough time-sub-steps, we numerically integrate the energy equation

with the source terms only in the affected cell(s). This ”time refinement” is applied only

locally, so the CPU time is not wasted in cells where the high time resolution is not required.

The numerical models are in a good agreement with our semi-analytical code (see Silich

et al. 2004). Figure 4 shows some examples from our many test calculations with different

cluster parameters, compared with the semi-analytical results (bold face lines in Figure 4).

The numerical models converge to the semi-analytical solution in runs with an increasing

resolution. A higher resolution is more important in the central region, and therefore we use

a scaled grid (i.e. radial size of grid cells dr proportional to r). Simulations on a scaled grid

give results comparable to runs on an equidistant grid with twice as many cells.

The resolution convergence was tested for 200, 400, 800, and 1200 radial grid cells for

LSC = 3 × 1041 erg s−1. The results show a good agreement in the whole computational
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Fig. 4.— The impact of strong radiative cooling on the resultant winds. Temperature

(panel a) and density (panel b) profiles of the stationary winds developed by clusters with

an RSC = 10 pc, and a mechanical energy input rate equal to 4.35×1041 erg s−1, 1.27×1042

erg s−1 and 6.2 × 1043 erg s−1 (solid, dotted and dashed lines, respectively). Note that

the less energetic cluster lies below the threshold line (see Figure 2) and it thus has its

stagnation radius at the cluster center. The resultant stagnation radius for each case is

indicated next to each of the solutions. Results from the semi-analytical method are shown

by thicker lines, and are compared with the numerical results (see section 3) shown by the

thin solid lines. In all numerical calculations, the lower temperature limit was set to 104

K. Above the threshold line the flow is not absolutely stationary and as a result there are

some oscillations of the stagnation point location, causing recurrent variations in the radius

at which the temperature drops to 104 K. Another aspect of the non-stationary behavior are

density enhancements visible in the outer parts of the wind.
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Fig. 5.— Solutions above the threshold line. The normalized mass and energy output for star

clusters whose mechanical luminosities exceeds the critical value. The dotted line in panel a)

indicates the fraction of the deposited matter (Ṁout) that leaves the cluster as a stationary

wind. This is compared with the results from the numerical simulations indicated by the

cross symbols. The solid line in the panel a) displays the fraction of the deposited matter

(Ṁin) that remains bound to the cluster and is thus accumulated within Rst to become

a source of secondary star formation. Panel b) shows that winds from clusters above the

threshold line carry only a fraction of the energy deposited by supernovae and stellar winds

within the cluster volume. Note that as Figure 3, both diagrams are applicable to clusters

of all sizes and energy input rates once the appropriate Lcrit, bound to the assumed vA∞
, is

selected.
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Fig. 6.— The flow within the star cluster volume. Radial profiles of pressure (solid lines)

and velocity (dashed lines) for the same cases presented in Figure 4. The horizontal lines

mark the zero velocity and the vertical dotted lines the location of the stagnation point.

Note that for the lowest energy case (upper left panel), the latter is at the center of the

cluster. In the medium energy case (upper right panel), the repeated passage of the cooling

front propagating rapidly from the cluster center outwards is followed by an inward motion

of a shock front to the low pressure region. This results in the oscillations of the stagnation

radius. In the high energy case (lower panel), the dense standing shells form by collisions

of shocks moving from both sides into the low pressure cold space located at some distance

from the cluster center. Note however that the position acquired by the stagnation point,

allows the wind in each case to attain its sonic velocity at the cluster surface.
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domain. The largest differences appear at the radius where the temperature drops. For

200/400, 400/800, 800/1200 this region is radially shifted by 2, 0.4 and 0.1 pc. In all other

simulations we use the highest resolution, 1200 grid cells.

3.1. Boundary and initial conditions

Within the star cluster volume, mass and energy per unit volume (qm and qe) are

continously and homogeneously replenished (qm = (3Ṁsc)/(4πR3
sc) and qe = (3Lsc)/(4πR3

sc))

using the following procedure at each time-step: 1) the density and the total energy in a

given cell are saved to ρold and etot,old, 2) new mass is inserted ρnew = ρold +qmdt, the velocity

is corrected so that the momentum is conserved vnew = voldρold/ρnew, 3) internal energy is

corrected to conserve the total energy ei,mid = etot,old − ρnewvnew/2; 4) the new energy is

inserted in a form of internal energy ei,new = ei,mid +qedt. The computational domain extents

in a range (Rin, Rout), where 0 < Rin ≪ Rsc. An open boundary condition was applied

at both ends of the computational grid, Rin and Rout. The initial conditions for clusters

below the threshold line were derived from semi-analytical solutions. For clusters above the

threshold line, a semi-analytical solution with the same Rsc and v
∞

and a Lsc just below

Lcrit was used. This is then followed by a continuous replenishment of the appropriate qm

and qe that correspond to the selected LSC .

Here, as examples, we present three calculations for the mechanical energy input rate

equals to 4.35×1041 erg s−1, 1.27×1042 erg s−1 and 6.2×1043 erg s−1. The other parameters

were RSC = 10 pc, VA∞
= 1000 km s−1, Rin = 2 pc and Rout = 100 pc. The resolution was

1200 grid cells in the radial direction.

3.2. 1-D numerical simulations

Our numerical scheme is able to reproduce with great accuracy the run of density,

velocity and temperature obtained with the semi-analytical method for clusters below the

threshold line (see Figure 4). For clusters above the threshold line the numerical simulations

become even more powerful as with such a method one is also able to calculate the flow

everywhere within the cluster volume (see Figure 6) and not only in the region exterior to

the stagnation point (as with the semi-analytical method, see section 2). Here, as examples,

we present three calculations for which RSC = 10 pc and the mechanical energy input rate

equals 4.35 × 1041 erg s−1, 1.27 × 1042 erg s−1 and 6.2 × 1043 erg s−1. Figure 4 displays the

large-scale flow and Figure 6 (pressure and velocity plots) provide details within the star
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cluster volume.

The lowest energy case (close to the threshold line) clearly shows the stagnation point

at the cluster center, there where the pressure is largest, and the sonic point at the cluster

surface (see Figure 6 upper left panel). For clusters above the threshold line (see upper

right and lower panels in Figure 6), the central regions of the cluster volume cool rapidly

down to ∼ 104 K. This causes the highly non-stationary behavior of the flow there, with

a number of the radiative shocks and cooling fronts passing through the inward moving

material (see Figure 6). This results in multiple local density enhancements. Some of these

may acquire positive velocities and move pass the stagnation point and perturb the quasi-

stationary region between Rst and RSC . These perturbations are also visible in the outer

parts of the wind (see Figure 4, panel b). Nevertheless, the free wind region, r > RSC ,

remains quasi-stationary and its inner structure is found to be in good agreement with that

predicted in the semi-analytical calculations (see Figure 4).

Thus the numerical calculations, in agreement with the semi-analytical results, basically

confirm the bimodal behavior for clusters above the threshold line. For such clusters, the

outer region with r > Rst presents a positive increasing velocity, while in the cold interior,

with r < Rst, the velocity uw may present a complicated time dependent profile associated to

the passage of rapid cooling fronts over the stagnant matter. The mass inserted into the outer

region leaves the cluster as a stationary wind, while the mass inserted into the cold inner

zone partly accumulates there, partly flows into the center through the inner boundary, or

partly enters the region outside the Rst and perturbs the wind at r > Rst (see Figures 4 and

6). For the largest mechanical energy input rate, multiple high density and low temperature

shells form within the volume defined by the stagnation point, r < Rst. These result from a

rapid mass inflow from both their sides, which makes them grow in mass as likely seeds for

further star formation.

4. Conclusions

We have presented here semi-analytical and numerical simulation of the hydrodynamics

undertaken by the matter reinserted via winds and supernovae by the sources evolving within

the volume occupied by a superstellar cluster. All of these calculations are based on the

assumptions made originally in the adiabatic solution of Chevalier & Clegg (1985) regarding

an even spacing between sources, a full conversion of the kinetic energy injected within the

star cluster volume into thermal energy and a smooth distribution of the injected material.

These assumptions lead to a gas with a sound speed at the cluster edge much larger than the

escape speed, even in the case of very massive and compact clusters, and thus gravitational
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effects have been ignored by all workers in the field.

Our results, that cover the full parameter space in the mechanical energy deposition

rate (or mass of the SSC) vs the cluster size (LSC vs RSC) plane, account for radiative

cooling. We have confirmed with 1D numerical simulations the location of the threshold line

on the LSC vs RSC plane (see Silich et al. 2004). Solutions far below the threshold line lead

to quasi-adiabatic stationary winds, while more massive clusters, approaching the threshold

line, produce stationary strongly radiative winds for which their temperature departs from

the adiabatic solution and drops to 104 K close to the star cluster surface. In all of these

cases the stagnation point remains at the cluster center and the sonic point is at the cluster

edge. The iteration over temperature then defines the appropriate initial conditions and

allows to integrate the basic equations numerically.

The main focus of this paper however has been on the solution for clusters above the

threshold line and our results superseed some of our previous findings. In particular, the

possibility of an isothermal wind, or supernebula, calculated in Tenorio-Tagle et al. (2005a)

under the assumption of mass accumulation everywhere within the star cluster volume, has

here been shown to be not possible. SSCs above the threshold line lead instead to an intrinsic

bimodal behavior: Their densest inner regions do cool immediately, depleting the pressure

and outward pressure gradient required to drive an outflow, while their outer zones manage,

in all cases, to compensate radiative cooling with the energy input rate and thus remain hot

and able to establish a stationary wind. In all of these cases the fraction of the cluster volume

that cools down and enters a phase of matter accumulation and further star formation, as

well as the fraction that drives a stationary wind, is decided by the location adopted by the

stagnation point.

The value of Rst is the minimum radius above which the stationary solution exists.

Within Rst cooling forms low pressure regions into which the inserted mass flows. The flow

can be either oscillatory (medium energy case) or colliding (high energy case) forming dense

shells out of mass arriving from both sides (see figure 6). In the semi-analytic approach the

location of the stagnation radius within the cluster volume is uniquely defined by the appro-

priate Lcrit corresponding to the assumed vA∞
, and the star cluster mechanical luminosity,

LSC . This, at the same time, uniquely defines the amount of matter and the energy flux

injected as a stationary wind as well as the amount that accumulates within the cluster inner

regions and which eventually is driven into further star formation. Our diagrams (Figures 3

and 5) are thus applicable to clusters of all sizes and all possible energy input rates as long

as the mechanical energy is scaled with the appropriate Lcrit, corresponding to the assumed

vA∞
.

A further implication of clusters above the threshold line is that their mechanical en-
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ergy and mass input rates into their surroundings are considerably smaller than the values

predicted from synthesis models of coeval clusters. Cooling and recombination within the

stagnation radius of such clusters would also reduce considerably their UV photon output.

Further calculations in two dimensions accounting for radiative cooling and also for

the self-gravity of the cluster, are now underway and would be the subject of a future

communication. In these calculations, thermal instabilities lead to the formation of dense

clumps often surrounded by a less dense hot wind. Preliminary results indicate that some of

these clumps are accelerated and even ejected from the cluster. However, more calculations

are required in order to estimate the net amount of outflowing matter. A detailed comparison

of our models with multi-wavelength observations will also be the subject of a forthcoming

communication.
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