Layered accretion in protoplanetary disks

ρ [g/cm³]

Outline:

- 1. Protoplanetary disks
- 2. FU Ori outbursts
- 3. Layered-disk model
- 4. Simulations of LD using TRAMP

Protoplanetary disks: observational evidence

Optical/NIR:

- Asymmetric profiles of forbidden emission lines (Edwards et al., 1987)
- Stellar light scattered on dust particles (Beckwith et al., 1989)
- Dark silhouettes in Orion nebulae and other HII regions

Millimeter/submillimeter interferometry:

- Broadband emission from the dust (Beckwith et al., 1990)
- CO rotational transitions suggest Keplerian rotational profile

- \bullet Frequency: cca 50% of TTS
- \bullet Mass: 0.01 0.1 M_{\odot} (from optically thin mm emision)
- Size: 100 1000 AU
- Lifetime: $\sim 10^7$ yr (from ages of TTS)
- Accretion rate: 10⁻⁹ − 10⁻⁶ M_☉yr⁻¹
 (from optical/UV excess from inner boundary layer)

8

- 1. Collapse of the primordial cloud: in $\sim 10^4$ yr
- 2. Formation stage: $\sim 10^5$ yr
 - disk hidden by the stellar gaseous envelope
 - energetic mass outflows and jets
 - fast evolution due to gravitational instabilities
 - finally protostellar envelope dispersed by created pre-MS star
- 3. Viscous stage: $\sim 10^7$ yr
 - \bullet geometrically thin accretion disk, Keplerian rotation
 - evolution given by viscosity (probably due to MHD turbulence)
 - \bullet planets are formed during this stage \rightarrow protoplanetary disk
 - finally disappears (accretion onto star, environmental effects, planet formation)

- steady state model: M = const
- mass and angular momentum conservation: $\Sigma = \frac{\dot{M}}{3\pi\nu} \left| 1 \left(\frac{R_*}{r}\right)^{1/2} \right|$
- α -viscosity: $\nu = \alpha c_s H$ (Shakura & Sunayev, 1973)
- energy released by accretion dissipated locally: $\frac{9}{8}\Sigma\nu\Omega^2 = \sigma T_e^4$
- emission is optically thick: $T_c^4 = \frac{3}{16} \Sigma \kappa T_e^4$ (Hubeny, 1990)
- disk is geometrically thin: $\Omega = \left(\frac{GM}{R}\right)^{1/2}$
- vertical hydrostatic equilibrium: $H = \frac{c_s}{\Omega}$

Solution:

Radial profiles of all interesting quantities $(\Sigma, T_e, T_c, H, ...)$ are power-laws with indexes dependent on the opacity $\kappa = \kappa(\rho, T)$. \dot{M} and α are the free parameters.

- young stars, large increases in optical brightness $\sim 4 \text{ mag}$
- decay timescales: 10-100 yr
- reflection nebulae, heavily extincted, large IR excess from circumstellar dust
- AD models: \dot{M} increases from 10^{-7} to $10^{-4} \ M_{\odot} \ yr^{-1}$, ~0.01 M_{\odot} accreted during one outburst

Object	Outburst	$t(\mathbf{Rise})$	$t(\mathbf{Decay})$	$d(\mathbf{kpc})$	L/L_{\odot}	CO flow	Jet/HH
FU Ori	1937	$\sim 1 \; { m yr}$	$\sim100{ m yr}$	0.5	500	no	no
$V1057 \ Cyg$	1970	$\sim 1 { m yr}$	$\sim 10 { m yr}$	0.6	800-250	yes	no
$V1515 \ Cyg$	1950s	$\sim 20 { m yr}$	$\sim30{ m yr}$	1.0	200	no	no
$V1735 \ Cyg$	~ 195 7-65	$< 8 { m yr}$	$> 20 { m yr}$	0.9	> 75	yes	no
V346 Nor	≥ 1984	$< 5 { m yr}$	$> 5 { m yr}$	0.7	?	yes	yes
BBW 76	< 1930	?	$\sim40{ m yr}$	1.7?	?	?	no
Z CMa	?	?	$> 100 { m yr}$	1.1	600	yes	yes
$L1551 \ IRS5$?	?	?	0.15	≥ 20	yes	yes
RNO 1B,C	?	?	?	0.8	?	yes?	no

FU Ori objects (Hartmann & Kenyon, 1996)

Models have to explain rise times $\sim 1 \text{ yr} \Rightarrow$ eruption must involve inner region (<1AU) of the disk.

- Triggering of outburst (Bonnel & Bastien, 1992)
 - disk perturbed by the passage of close companion star
 - but no apparent v_r shifts were observed in the brightest FU Ori objets
- The thermal instability mechanism
 - $-F_{\rm vis}/F_{\rm rad} \sim \kappa(\rho,T)T^{-3}\Sigma^2 \alpha$
 - if κ increases faster than T^3 \Rightarrow instability
 - decay timescales too short
- The layered-disk model
 - accretion of material accumulated in "dead zone"

Layered-disk: basic idea (Gammie, 1996)

- angular momentum transfer MRI (Balbus & Hawley, 1991)
- parts of the disk are not ionized enough to be well coupled to the magnetic field
- \bullet inner active region (IAR) collisional ionization
- layered accretion region (LAR) surface active layers (ASL) ionized by cosmic rays shield the dead zone (DZ) near the midplane
- outer active region (OAR) low surface density, CR are able to ionize whole disk

Layered-disk: physical processes

- MRI occurs for: $Re_M \equiv \frac{V_A H}{\eta} > 1$
- Alfven velocity related to α -viscosity: $V_A = \alpha^{1/2} c_s$
- resistivity η related to the ionization degree $x = n_e/n_H$: $\eta = 6.5 \times 10^3 x^{-1} \text{cm}^2 \text{s}^{-1}$
- using $H = c_s / \Omega$ magnetic Reynolds number:

$$Re_M = 7.4 \times 10^{13} x \alpha^{1/2} \left(\frac{R}{AU}\right)^{3/2} \left(\frac{T}{500K}\right) \left(\frac{M}{M_{\odot}}\right)^{-1/2}$$

 \bullet collisional ionization: $x=x(\rho,T)$ (Umebayashi, 1983)

$$x \sim \log(\rho), \qquad x(T) = \begin{cases} 10^{-16} \text{ for } T \le 800 \ K \\ 10^{-13} \text{ for } T \sim 900 \ K \\ 10^{-11} \text{ for } T \ge 1000 \ K \end{cases}$$

• CR ionization: stopping depth $\Sigma_0 \sim 100 \text{ g/cm}^2$ (Umebayashi & Nakano, 1981)

$$x = \left(\frac{\zeta}{\beta n_H}\right)^{1/2} = 1.6 \times 10^{-12} \left(\frac{T}{500 \text{K}}\right)^{1/4} \left(\frac{\zeta}{10^{-17} \text{s}^{-1}}\right)^{1/2} \left(\frac{n_H}{10^{13} \text{cm}^{-3}}\right)^{-1/2}$$

• Basic equations for one surface active layer:

$$\dot{M} = 6\pi r^{1/2} \frac{\partial}{\partial r} (2\Sigma_a \nu r^{1/2}), \qquad \frac{9}{4} \Sigma_a \nu \Omega^2 = \sigma T_e^4, \qquad \nu = \alpha c_s H$$

$$T_c^4 = \frac{3}{8} \Sigma_a \kappa(\rho, T_c) T_e^4, \qquad \Omega = \left(\frac{GM}{R}\right)^{1/2}, \qquad H = \frac{c_s}{\Omega}$$

• $\rho_c, T_c, T_e, \dot{M}, H, \ldots$ – power-laws

- $\Sigma_a = \text{const} \Rightarrow \dot{M} = \dot{M}(r)$ increasing with $r \Rightarrow$ mass accumulates in DZ
- inner boundary of LAR at R_c, given by T_c > 1000K (in LAR or IAR?) – depends on radial radiation transfer
- \dot{M} in IAR depends on R_c

Layered-disks: MRI simulations (Fleming & Stone, 2003)

- non-ideal MHD ($\eta \neq 0$), shearing box, isothermal EOS
- \bullet Maxwell stress vanishes in DZ MHD turbulence decays
- \bullet Reynolds stress non-zero in DZ HD turbulence survives due to perturbations from active layers (10% of Maxwell s.)

Layered-disks: long-term evolution

- LD model predicts \dot{M} independent on time
- \bullet but observations of PPD indicate decrease of \dot{M}
- possible solutions:
 - decrease of opacity due to grain growth
 - changing stellar radiation
 - small viscosity in DZ: $b = \alpha_{DZ}/\alpha_{AR}$ (Stepinski, 1999)

Layered-disks: gravitational instability of DZ (Armitage et al., 2001)

- mass accumulates in DZ until it becomes gravitationally unstable and viscous
- gravitational instability for $Q < Q_{\text{crit}} \equiv 2$, $Q = \frac{c_s \Omega}{\pi G \Sigma}$

•
$$\alpha_{\text{grav}} = 0.01 \left(\frac{Q_{\text{crit}}^2}{Q^2} - 1 \right)$$
 for $Q < Q_{\text{crit}}$ (Lin & Pringle, 1987)

- numerically solve equation $\frac{\partial \Sigma}{\partial t} = \frac{3}{r} \frac{\partial}{\partial r} \left[r^{1/2} \frac{\partial}{\partial r} \left(\nu \Sigma_a r^{1/2} \right) \right] + \dot{\Sigma}(r, t)$
- $\dot{\Sigma}(r,t)$ infall of mass to the outer region
- steady solution for very high mass infall
- otherwise outbursts: $t_{\text{outburst}} = 10^4 \text{yr}, t_{\text{recur}} = 10^5 \text{yr}$

LD: HD simulations with radiative transfer

(R. Wünsch, M. Różyczka & H. Klahr)

Aim:

- explore the influence of radiation transfer on the layered disk model
- how the DZ changes, does it survive at all?
- HD code TRAMP: (Hubert Klahr)

Three-dimensional RAdiation-hydrodynamical Modeling Project

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) &= 0 \\ \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} &= -\frac{\nabla p}{\rho} - \nabla \Phi + \nabla \cdot \mathbf{W} \\ \mathbf{v} &= -\frac{kT}{\mu m_H} \rho \\ \mathbf{F} &= -\frac{\lambda c}{\rho \kappa} \nabla E_r \end{aligned}$$

$$\mathbf{F} = -\frac{\lambda c}{\rho \kappa} \nabla E_r$$

- 2D axially symmetric in spherical (r, θ) coords.
- initial conditions: analytical model
- surface layers ($\Sigma_a = 100 \text{g cm}^{-2}$) and inner region (T > 1000 K) $\alpha = 0.005 0.02$, for other parts (DZ) $\alpha = 0$
- accumulation of mass in DZ
- inner edge of DZ is heated by the adjacent active disk
- \bullet increasing optical depth leads to the increase of T
- \bullet when T reaches 1000K, inner part of DZ is ignited
- oscillations of the inner edge of DZ minioutbursts, timescale $\sim 100yr$
- \dot{M} increases only several times
- may prevent DZ to accumulate enough mass for FU Ori type outburst

References

Armitage, et al. 2001, MNRAS, 324, 705 Balbus & Hawley, 1991, ApJ, 376, 214 Beckwith et al., 1989 Beckwith et al., 1990, AJ, 99, 924 Bonnel & Bastien, 1992, ApJ, 401, L31 Chandler, 1998, ASP Conf., Vol. 148 Edwards et al., 1987, ApJ, 321, 473 Fleming & Stone, 2003, ApJ, 585, 908 Gammie, 1996, ApJ, 457, 355 Hartmann & Kenyon, 1996, ARA&A, 34, 207 Hubeny, 1990, ApJ, 351, 632 Lin & Pringle, 1987, MNRAS, 225, 607 Shakura & Sunayev, 1973, A&A, 24, 337 Stepinski, 1999, 30th Anual Lunar and Planetary Conf., No. 1205 Umebayashi, 1983, Prog. Theor. Phys., 69, 480 Umebayashi & Nakano, 1981, PASJ, 33, 617