RHD simulations of layered disks

(R. Wünsch, M. Różyczka, H. Klahr)

Outline:

- 1 Analytical description of LD
- 2 Numerical model
- 3 Ring instability
- 4 Evolution of the dead zone

Layered-disk: basic idea (Gammie, 1996)

- angular momentum transfer MRI (Balbus & Hawley, 1991)
- parts of the disk are not ionized enough to be well coupled to the magnetic field
- inner active region (IAR) collisional ionization
- layered accretion region (LAR) surface active layers (ASL) ionized by cosmic rays shield the dead zone (DZ) near the mid-plane
- outer active region (OAR) low surface density, CR are able to ionize whole disk

Layered-disk: physical processes

- MRI occurs for: $Re_M \equiv \frac{V_A H}{\eta} > 1$
- Alfven velocity related to lpha-viscosity: $V_A=lpha^{1/2}c_s$
- resistivity η related to the ionization degree $x=n_e/n_H$: $\eta=6.5\times 10^3 x^{-1} {\rm cm}^2 {\rm s}^{-1}$
- using $H = c_s / \Omega$ magnetic Reynolds number:

$$Re_M = 7.4 \times 10^{13} x \alpha^{1/2} \left(\frac{R}{AU}\right)^{3/2} \left(\frac{T}{500K}\right) \left(\frac{M}{M_{\odot}}\right)^{-1/2}$$

collisional ionization: $x = x(\rho, T)$ (Umebayashi, 1983) $x \sim \log(\rho), \qquad x(T) = \begin{cases} 10^{-16} & \text{for } T \le 800 \ K \\ 10^{-13} & \text{for } T \sim 900 \ K \\ 10^{-11} & \text{for } T \ge 1000 \ K \end{cases}$

• CR ionization: stopping depth $\Sigma_0 \sim 100~{
m g/cm}^2$

$$(\text{Umebayashi & Nakano, 1981})$$

$$c = \left(\frac{\zeta}{\beta n_H}\right)^{1/2} = 1.6 \times 10^{-12} \left(\frac{T}{500\text{K}}\right)^{1/4} \left(\frac{\zeta}{10^{-17}\text{s}^{-1}}\right)^{1/2} \left(\frac{n_H}{10^{13}\text{cm}^{-3}}\right)^{-1/2}$$

Layered disk: basic equations for ASL

- mass and angular momentum conservation: $\dot{M} = 6\pi r^{1/2} \frac{\partial}{\partial r} (2\Sigma_a \nu r^{1/2})$

- α -viscosity: (Shakura & Sunayev, 1973) $u = \alpha c_s H_a$
- energy released by accretion dissipated locally: $\frac{9}{4}\Sigma_a\nu\Omega^2=\sigma T_e^4$
- emission is optically thick: (Hubeny, 1990) $T_c^4 = \frac{3}{8} \Sigma_a \kappa(\rho,T_c) T_e^4$
- vertical hydrostatic equilibrium:

$$c_{\rm s}^2 = H_{\rm a}(H_{\rm a} + H_{\rm DZ})\Omega^2$$

disk is geometrically thin:

$$\Omega = \left(\frac{GM}{R}\right)^{1/2}$$

Layered disk: analytical solution

- Standard solution (Gammie, 1996): $H_{\mathrm{DZ}}
 ightarrow 0$
- radial profiles M, T_e , T_c , H_a , $\ldots \rightarrow$ power-laws
- exponents dependent on the opacity $\kappa = \kappa(\rho, T)$
- α and Σ_a are the free parameters
- $\Sigma_a = \text{const} \Rightarrow \dot{M} = \dot{M}(r)$ increasing with r• accumulation of mass in DZ:

 $\dot{\Sigma}_{\mathrm{DZ}} = \frac{1}{2\pi r} \frac{\partial \dot{M}}{\partial r}$

 accretion cannot be steady - when ∑_{DZ} is high enough, DZ mass is accreted in an outburst like event
 ⇒ suggested as mechanism for FU
 Orionis outbursts (Gammie, 1996)

Numerical model

• RHD code TRAMP: (Klahr et al., 1999)

(Three-dimensional RAdiation-hydrodynamical Modeling Project)

solves set of Navier-Stokes equations:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

$$\frac{\partial \rho \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \rho \mathbf{v} = -\nabla P - \rho \nabla \Phi + \nabla \cdot \mathbf{T} \qquad P = \frac{kT}{\mu m_H} \rho$$

$$c_v \rho \left[\frac{\partial T}{\partial t} + (\mathbf{v} \cdot \nabla) T \right] = -P \nabla \cdot \mathbf{v} + \mathbf{T} : (\nabla \mathbf{v})$$

at the end of time-step: radiation transfer

$$\frac{\partial E_r}{\partial t} = -\nabla \cdot \mathbf{F}$$
, where $E_r = aT^4$, $\mathbf{F} = -\frac{\lambda c}{\rho \kappa} \nabla E_r$

- 2D axially symmetric in spherical (r, θ) coords.
- initial conditions: analytical model (vertically isothermal)
 viscosity:
 - $\land \alpha = 0.01$ surface layers ($\Sigma_a = 100 \text{g cm}^{-2}$) and inner region (T > 1000 K)
 - $\triangleright \alpha = 0$ elsewhere (dead zone)

Ring instability

dead zone decomposes into rings

ring instability mechanism:

- ▶ thickness of surface layer $H_{\rm a}$ depends on the dead zone thickness $H_{\rm DZ}$ (due to different vertical gravity)
- ▶ $H_{\rm a}$ is smaller in the ring-like perturbation ⇒ ν is smaller there, too
- $\blacktriangleright\ \dot{M}$ depends on derivative of ν \Rightarrow it is smaller in inner edge and higher in outer edge of the ring
- \blacktriangleright enhanced mass accumulation in the ring \Rightarrow positive feedback

rings may work as traps for the dust \rightarrow formation of planets rings may decay due to the hydrodynamic instability, if $q > \sqrt{3}$ $(\Omega \sim r^{-q})$ (Papaloizou & Pringle, 1985)

Richard Wünsch, NCAC, Warsaw

Ring instability - analytical description

- thickness of the dead zone important for \dot{M} (Huré, 2002)
- dimensionless disk thickness: $\delta = \frac{H_a + H_{\rm DZ}}{H_a}$
- rotational velocity corrected to mid-plane pressure:

$$\Omega^2 = \Omega_0^2 + \frac{1}{\rho_m} \frac{\partial P_m}{\partial r}$$

- ring-like perturbation of δ :

 $\delta = \delta_0 + \delta_k \cos(kR)$, where $R = r - r_0$

- δ_0 unperturbed disk thickness, r_0 position of the ring,
- \boldsymbol{k} wavenumber
- inserting into equations of layered disk, linearization
- \rightarrow perturbation growth rate given by the equation: $\dot{\delta_k} = \omega(r_0, \delta_0, k) \delta_k$

Ring instability - dispersion relation

- ω diverges for $k \to \infty$ ($\lambda \to 0$) \Rightarrow the thinnest rings are the most unstable
- radial extent of rings is given by thermal motion of particles $\lambda_0 \sim \frac{c_s}{\Omega}$
- radial extent of rings in simulation in agreement with analytical model (~ vertical thickness)
- growth rate is smaller in simulation because the ra-dial transfer of heat makes the temperature profile shallower

Layered-disks: MRI simulations

(Fleming & Stone, 2003)

- indications for a small viscosity in the dead zone
- non-ideal MHD ($\eta \neq 0$), shearing box, isothermal EOS

 Maxwell stress vanishes in DZ - MHD turbulence decays

 Reynolds stress non-zero in DZ - HD turbulence survives due to perturbations from active layers (10% of Maxwell s.)

Evolution of the dead zone

- inner edge of DZ oscillates
- timescale $\sim 10 100 \mathrm{yr}$
- DZ continuously depleted from inner edge

small changes in M (amplitude 0.5−1×10⁻⁸ M_☉yr⁻¹)
 mass stored in the dead zone grows

Conclusions

- the dead zone with zero viscosity is a subject of the ring instability
- the instability occurs since the local enhancement of the disk thickness leads to a drop of the viscosity and the accretion rate profile which increases the original disk thickness enhancement

Conclusions

- the dead zone with zero viscosity is a subject of the ring instability
- the instability occurs since the local enhancement of the disk thickness leads to a drop of the viscosity and the accretion rate profile which increases the original disk thickness enhancement
- in the case of small viscosity in DZ the oscillations of the inner edge occur
- mass is continuously removed from the inner part of the dead zone - not consistent with the sudden huge increase of accretion rate due to the ignition of mass accumulated in the dead zone (FU Ori outburst)

References

Balbus & Hawley, 1991, ApJ, 376, 214
Fleming & Stone, 2003, ApJ, 585, 908
Gammie, 1996, ApJ, 457, 355
Huré, J.-M., 2002, PASJ, 54, 775
Hubeny, 1990, ApJ, 351, 632
Klahr, H., Henning, T., Kley, W., 1999, ApJ, 514, 325
Papaloizou, J. C. B., Pringle, J. E., 1985, MNRAS, 213, 799
Shakura & Sunayev, 1973, A&A, 24, 337
Umebayashi, 1983, Prog. Theor. Phys., 69, 480
Umebayashi & Nakano, 1981, PASJ, 33, 617