Layered accretion in protoplanetary disks

R. Wünsch, M. Różyczka, H. Klahr

T [K]; Time = 233 yr = 1136 OBO

Outline:

- 1. FU Ori outbursts
- 2. Layered-disk model
- 3. Simulations of LD using TRAMP

- young stars, large increases in optical brightness $\sim 4 \text{ mag}$
- decay timescales: 10-100 yr
- reflection nebulae, heavily extincted, large IR excess from circumstellar dust
- AD models: \dot{M} increases from 10^{-7} to $10^{-4} \ M_{\odot} \ yr^{-1}$, ~0.01 M_{\odot} accreted during one outburst

FU Ori objects (Hartmann & Kenyon, 1996)

		U (• /	/	
Object	Outburst	$t(\mathbf{Rise})$	t(Decay)	$d(\mathbf{kpc})$	L/L_{\odot}	CO flow	Jet/HH
FU Ori	1937	$\sim 1 \; { m yr}$	$\sim 100 { m \ yr}$	0.5	500	no	no
$V1057 \ Cyg$	1970	$\sim 1 \; { m yr}$	$\sim10{ m yr}$	0.6	800-250	yes	no
$V1515 \ Cyg$	1950s	$\sim 20 { m yr}$	$\sim30{ m yr}$	1.0	200	no	no
$V1735 \ Cyg$	~ 195 7-65	$< 8 { m yr}$	$> 20 { m yr}$	0.9	> 75	yes	no
V346 Nor	≥ 1984	$< 5 { m yr}$	$> 5 { m yr}$	0.7	?	yes	yes
BBW 76	< 1930	?	$\sim 40 { m yr}$	1.7?	?	?	no
Z CMa	?	?	$> 100 { m yr}$	1.1	600	yes	yes
$L1551 \ IRS5$?	?	?	0.15	$\ge {f 20}$	\mathbf{yes}	yes
RNO 1B,C	?	?	?	0.8	?	yes?	no

Models have to explain rise times $\sim 1 \text{ yr} \Rightarrow$ eruption must involve inner region (<1AU) of the disk.

- Triggering of outburst (Bonnel & Bastien, 1992)
 - disk perturbed by the passage of close companion star
 - but no apparent v_r shifts were observed in the brightest FU Ori objects
- \bullet The thermal instability mechanism
 - S-curve: balance between viscous heating and rad. cooling
 - predicts increase of accretion rate consistent with observations
 - decay timescales too short
- The layered-disk model
 - accretion of material accumulated in "dead zone"
 - $-\operatorname{can} \mathbf{DZ}$ with such amount of mass (0.01 M_{\odot}) survive?

 $\alpha = 10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}$

Layered-disk: basic idea (Gammie, 1996)

- angular momentum transfer MRI (Balbus & Hawley, 1991)
- parts of the disk are not ionized enough to be well coupled to the magnetic field
- \bullet inner active region (IAR) collisional ionization
- layered accretion region (LAR) active surface layers (ASL) ionized by cosmic rays shields the dead zone (DZ) near the midplane
- outer active region (OAR) low surface density, CR are able to ionize whole disk

Layered-disk: physical processes

- MRI occurs for: $Re_M \equiv \frac{V_A H}{\eta} > 1$
- Alfven velocity related to α -viscosity: $V_A = \alpha^{1/2} c_s$
- resistivity η related to the ionization degree $x = n_e/n_H$: $\eta = 6.5 \times 10^3 x^{-1} \text{cm}^2 \text{s}^{-1}$
- using $H = c_s / \Omega$ magnetic Reynolds number:

$$Re_M = 7.4 \times 10^{13} x \alpha^{1/2} \left(\frac{R}{AU}\right)^{3/2} \left(\frac{T}{500K}\right) \left(\frac{M}{M_{\odot}}\right)^{-1/2}$$

 \bullet collisional ionization: $x=x(\rho,T)$ (Umebayashi, 1983)

$$x \sim \log(\rho), \qquad x(T) = \begin{cases} 10^{-16} \text{ for } T \le 800 \ K\\ 10^{-13} \text{ for } T \sim 900 \ K\\ 10^{-11} \text{ for } T \ge 1000 \ K \end{cases}$$

• CR ionization: stopping depth $\Sigma_0 \sim 100 \text{ g/cm}^2$ (Umebayashi & Nakano, 1981)

$$x = \left(\frac{\zeta}{\beta n_H}\right)^{1/2} = 1.6 \times 10^{-12} \left(\frac{T}{500 \text{K}}\right)^{1/4} \left(\frac{\zeta}{10^{-17} \text{s}^{-1}}\right)^{1/2} \left(\frac{n_H}{10^{13} \text{cm}^{-3}}\right)^{-1/2}$$

• Basic equations for the layered accretion region:

$$\dot{M} = 6\pi r^{1/2} \frac{\partial}{\partial r} (2\Sigma_a \nu r^{1/2}), \qquad \frac{9}{4} \Sigma_a \nu \Omega^2 = \sigma T_e^4, \qquad \nu = \alpha c_s H$$

$$T_c^4 = \frac{3}{8} \Sigma_a \kappa(\rho, T_c) T_e^4, \qquad \Omega = \left(\frac{GM}{R}\right)^{1/2}, \qquad H = \frac{c_s}{\Omega}$$

• $\rho_c, T_c, T_e, \dot{M}, H, \ldots$ – power-laws

- $\Sigma_a = \text{const} \Rightarrow \dot{M} = \dot{M}(r)$ increasing with $r \Rightarrow$ mass accumulates in DZ
- temperature discontinuity at inner boundary of DZ $R_i \Rightarrow$ radiation transfer may shift R_i outwards (and increase \dot{M})

Layered disk: mass accumulated in DZ

Viscosity in the dead zone

- MHD simulations of MRI show that the pure hydrodynamic turbulence in DZ may be supported by perturbations from active layers (Fleming & Stone, 2003)
- viscosity in DZ can explain observed decrease of accretion rate on the evolutionary time-scale (Stepinski, 1999)

The TRAMP code (H. Klahr) Three-dimensional RAdiation-hydrodynamical Modeling Project

- finite-difference hydrodynamic code similar to ZEUS
- includes full tensor viscosity
- radiation transfer using flux limited diffusion approximation

Solves the set of Navier-Stokes equations:

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) &= 0 \\ \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} &= -\frac{\nabla p}{\rho} - \nabla \Phi + \nabla \cdot \mathbf{W} \\ c_v \rho \left[\frac{\partial T}{\partial t} + (\mathbf{v} \cdot \nabla) T \right] &= -p \nabla \cdot \mathbf{v} + \frac{Tr(\mathbf{W}^2)}{2\rho\nu} - \nabla \cdot \mathbf{F} \end{aligned} \qquad \begin{aligned} \mathbf{F} &= -\frac{\lambda c}{\rho \kappa} \nabla E_r \end{aligned}$$

- 2D, axially symmetric in (r, θ)
- 2 model types:
 - 1. Inner disk: IAR, part of LAR
 - 2. Contain whole DZ: IAR, LAR, OAR
- parameters:

$$\begin{aligned} &\alpha = 0.005, 0.01, 0.02 \\ &b = \alpha_{\rm DZ}/\alpha = 0, 0.01, 0.1 \\ &\dot{M}_{\rm OAR} = 2 \times 10^{-8} - 10^{-7} \ M_{\odot} yr^{-1} \ \text{(type 2 models only)} \end{aligned}$$

- initial conditions: radial profiles of Σ , T, Ω according to analytical model $v_r = v_{\theta} = 0$ vertical structure – isothermal
- boundary conditions: inner boundary: outflow outer boundary: inflow, M_{LD} (type 1) or M_{OAR} (type 2)

b=0.1; non-zero viscosity in the dead zone

- oscillations of the inner edge of DZ
- growing amplitude
- critical surface density exceeded several times

b=0; no viscosity in the dead zone

- dead zone decomposes into rings
- in rings \dot{M} rises steeply with r \Rightarrow mass accumulates in rings

Type 2: Whole-DZ models

References

Bonnel & Bastien, 1992, ApJ, 401, L31 Chandler, 1998, ASP Conf., Vol. 148 Fleming & Stone, 2003, ApJ, 585, 908 Gammie, 1996, ApJ, 457, 355 Hartmann & Kenyon, 1996, ARA&A, 34, 207 Hubeny, 1990, ApJ, 351, 632 Shakura & Sunayev, 1973, A&A, 24, 337 Stepinski, 1999, 30th Anual Lunar and Planetary Conf., No. 1205 Umebayashi, 1983, Prog. Theor. Phys., 69, 480 Umebayashi & Nakano, 1981, PASJ, 33, 617