RHD simulations of layered disks

(R. Wünsch, M. Różyczka, H. Klahr)

Wünsch, R., Różyczka, M., Klahr, H., 2005, MNRAS, in preparation 2-D models of layered proto-planetary disks: I. The ring instability

Outline:

- 1 Basic Idea of Layered Disk
- 2 Ring instability

Layered-disk: basic idea (Gammie, 1996)

- angular momentum transfer MRI (Balbus & Hawley, 1991)
- parts of the disk are not ionized enough to be well coupled to the magnetic field
- inner active region (IAR) collisional ionization
- layered accretion region (LAR) surface active layers (ASL) ionized by cosmic rays shield the dead zone (DZ) near the mid-plane
- outer active region (OAR) low surface density, CR are able to ionize whole disk

Ring instability

dead zone decomposes into rings

ring instability mechanism:

- thickness of surface layer H_a depends on the dead zone thickness H_{DZ} (due to different vertical gravity)
- ▶ $H_{\rm a}$ is smaller in the ring-like perturbation ⇒ ν is smaller there, too
- $\blacktriangleright\ \dot{M}$ depends on derivative of ν \Rightarrow it is smaller in inner edge and higher in outer edge of the ring
- \blacktriangleright enhanced mass accumulation in the ring \Rightarrow positive feedback

rings may work as traps for the dust \rightarrow formation of planets rings may decay due to the hydrodynamic instability, if $q > \sqrt{3}$ $(\Omega \sim r^{-q})$ (Papaloizou & Pringle, 1985)