2D models of layered protoplanetary discs

R. Wünsch, H. Klahr and M. Różyczka, 2005, MNRAS, 362, 361 The ring instability

R. Wünsch, A. Gawryszczak, H. Klahr and M. Różyczka, 2005, MNRAS, submitted The effect of a residual viscosity in the dead zone

Outline:

- 1 Introduction of the layered disc model
- 2 Numerical code
- 3 Ring instability
- 4 Residual viscosity in the dead zone

Layered-disc: basic idea (Gammie, 1996)

- angular momentum transfer MRI (Balbus & Hawley, 1991)
- parts of the disc are not ionized enough to be well coupled to the magnetic field
- inner active region (IAR) collisional ionization
- layered accretion region (LAR) surface active layers (ASL) ionized by cosmic rays shield the dead zone (DZ) near the mid-plane
- outer active region (OAR) low surface density, CR are able to ionize whole disc

Layered-disc: physical processes

- MRI occurs for: $Re_M \equiv \frac{V_A H}{\eta} > 1$
- Alfven velocity related to lpha-viscosity: $V_A = lpha^{1/2} c_s$
- resistivity η related to the ionization degree $x = n_e/n_H$: $\eta = 6.5 \times 10^3 x^{-1} {\rm cm}^2 {\rm s}^{-1}$
- using $H = c_s / \Omega$ magnetic Reynolds number:

$$Re_M = 7.4 \times 10^{13} x \alpha^{1/2} \left(\frac{R}{AU}\right)^{3/2} \left(\frac{T}{500K}\right) \left(\frac{M}{M_{\odot}}\right)^{-1/2}$$

• collisional ionization: $x = x(\rho, T)$ (Umebayashi, 1983) $x \sim \log(\rho), \quad x(T) = \begin{cases} 10^{-16} & \text{for } T \le 800 \ K \\ 10^{-13} & \text{for } T \sim 900 \ K \\ 10^{-11} & \text{for } T \ge 1000 \ K \end{cases}$

• CR ionization: stopping depth $\Sigma_0 \sim 100~{
m g/cm}^2$

$$\begin{aligned} & (\text{Umebayashi & Nakano, 1981}) \\ &= \left(\frac{\zeta}{\beta n_H}\right)^{1/2} = 1.6 \times 10^{-12} \left(\frac{T}{500\text{K}}\right)^{1/4} \left(\frac{\zeta}{10^{-17}\text{s}^{-1}}\right)^{1/2} \left(\frac{n_H}{10^{13}\text{cm}^{-3}}\right)^{-1/2} \end{aligned}$$

 \mathcal{X}

Properties of the layered accretion

description of the layered accretion region:

 $\dot{M} = 6\pi r^{1/2} \frac{\partial}{\partial r} (2\Sigma_a \nu r^{1/2}), \quad \nu = \alpha c_{s,i} H_a, \quad \frac{9}{4} \Sigma_a \nu \Omega^2 = \sigma T_e^4$ $T_i^4 = \frac{3}{8} \Sigma_a \kappa(\rho_i, T_i) T_e^4, \quad c_{s,i}^2 = H_a (H_a + H_{\rm DZ}) \Omega^2$

- solution: M(r), $T_e(r)$, $T_i(r)$, $\ldots \rightarrow$ power-laws, exponents dependent on the opacity $\kappa = \kappa(\rho_i, T_i)$
- $\Sigma_a = \text{const} \Rightarrow \dot{M} = \dot{M}(r)$ increasing with r
- accumulation of mass in DZ:

$$\dot{\Sigma}_{\mathrm{DZ}} = \frac{1}{2\pi r} \frac{\partial \dot{M}}{\partial r}$$

 accretion cannot be steady - when ∑_{DZ} is high enough, DZ mass is accreted in an outburst like event
 ⇒ suggested as mechanism for FU Orionis outbursts (Gammie, 1996)

Numerical model

• RHD code TRAMP: (Klahr et al., 1999)

(Three-dimensional RAdiation-hydrodynamical Modeling Project)

solves set of Navier-Stokes equations:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

$$\frac{\partial \rho \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\rho \mathbf{v} = -\nabla P - \rho \nabla \Phi + \nabla \cdot \mathbf{T} \qquad P = \frac{kT}{\mu m_H}\rho$$

$$c_v \rho \left[\frac{\partial T}{\partial t} + (\mathbf{v} \cdot \nabla)T\right] = -P \nabla \cdot \mathbf{v} + \mathbf{T} : (\nabla \mathbf{v})$$

- radiation transfer: flux limited diffusion approximation $\frac{\partial E_r}{\partial t} = -\nabla \cdot \mathbf{F}$, where $E_r = aT^4$, $\mathbf{F} = -\frac{\lambda c}{\rho \kappa} \nabla E_r$
- 2D axially symmetric in spherical (r, θ) coords.
- initial conditions: analytical model (vertically isothermal)
- viscosity:

▷ $\alpha_a = 10^{-2}$ - surface layers ($\Sigma_a = 100 \text{g cm}^{-2}$) and inner region (T > 1000 K) ▷ $\alpha_{DZ} = 0, 10^{-4}, 10^{-3}$ - elsewhere (dead zone)

Ring instability - mechanism

• dead zone decomposes into rings

ring instability mechanism:

- thickness of surface layer H_a depends on the dead zone thickness H_{DZ} (due to different vertical gravity)
- $\blacktriangleright\ \dot{M}$ depends on derivative of ν \Rightarrow it is smaller in inner edge and higher in outer edge of the ring
- \triangleright enhanced mass accumulation in the ring \Rightarrow positive feedback

- rings may work as traps for the dust \rightarrow formation of planets
- rings may decay due to the hydrodynamic instability, if $q > \sqrt{3}$ $(\Omega \sim r^{-q})$

(Papaloizou & Pringle, 1985)

Ring instability - analytical description

- thickness of the dead zone important for \dot{M} (Huré, 2002)
- dimensionless disc thickness: $\delta = \frac{H_a + H_{\rm DZ}}{H_a}$
- rotational velocity corrected to mid-plane pressure:

$$\Omega^2 = \Omega_0^2 + \frac{1}{\rho_m} \frac{\partial P_m}{\partial r}$$

• ring-like perturbation of δ :

 $\delta = \delta_0 + \delta_k \cos(kR)$, where $R = r - r_0$

- δ_0 unperturbed disc thickness, r_0 position of the ring,
- k wavenumber
- inserting into equations of layered disc, linearization
- \rightarrow perturbation growth rate given by the equation: $\dot{\delta_k} = \omega(r_0, \delta_0, k) \delta_k$

Ring instability - dispersion relation

- ω diverges for $k \to \infty$ ($\lambda \to 0$) \Rightarrow the thinnest rings are the most unstable
- radial extent of rings is given by thermal motion of particles $\lambda_0 \sim \frac{c_s}{\Omega}$
- radial extent of rings in simulation in agreement with analytical model (~ vertical thickness)
- growth rate is smaller in simulation because of the processes that make the radial temperature profile shallower (convection, radiation transport)

Ring instability - influence of irradiation

analytical approximative approach: $T_i^4 = \frac{3}{8}\tau T_e^4 + WT_\star^4$

- changes the vertical structure of the unperturbed disc
 - ▷ conical disc: $W = \frac{2}{3\pi} \left(\frac{R_{\star}}{r}\right)^3 \rightarrow$ viscous term always dominates
 - ▶ flaring disc: $W = \alpha_{\rm gr} \left(\frac{R_{\star}}{r}\right)^2$, for $H/r \sim r^{2/7}$ → irradiation important for r > 10 AU

ullet smoothes the temperature \Rightarrow suppresses the ring instability

▷ grazing angle of the inner edge of the ring: $\alpha_{gr} \sim \frac{\delta_k}{l(\delta_0 + \delta_k)} + \frac{2}{3\pi} \frac{R_{\star}}{r}$ $\rightarrow \nu(\delta_k, \delta_0, r, l)$

perturbation of the disc thickness has to reach a certain value, then the instability can grow

Viscosity in the dead zone - motivation

(Fleming & Stone, 2003)

- indications for a small viscosity in the dead zone
- non-ideal MHD ($\eta \neq 0$), shearing box, isothermal EOS
- Maxwell stress vanishes in DZ - MHD turbulence decays
- Reynolds stress non-zero in DZ - HD turbulence survives due to perturbations from active layers (10% of Maxwell s.)

Mini-outbursts - properties, accretion rate

• models with different ν computed for several 1000 orb.:

- ▷ definition of ν : $\nu = \alpha c_s H_a$ vs. $\nu = \alpha c_s^2 / \Omega$
- \triangleright viscosity in active parts $\alpha_a = 0.005, 0.01, 0.02$
- \triangleright viscosity in the dead zone $\alpha_{\rm DZ} = 0, 0.01$ and $0.1 \alpha_a$
- rings growth rate cca $10 \times$ faster for $\nu = \alpha c_s H_a$
- $\alpha_{\rm DZ} = 0, 0.01 \alpha_a \rightarrow \text{rings}, \ \alpha_{\rm DZ} = 0.1 \alpha_a \rightarrow \text{mini-outbursts}$
- high viscosity ($\alpha_a = 0.02$) \rightarrow regular mini-outbursts, narrow peaks of the accretion rate, outer part of DZ stationary

Layered disc with $\alpha_{DZ} \neq 0$

- analytical description of layered disc with $\alpha_{DZ} \neq 0$: $\dot{M} = 12\pi r^{1/2} \frac{\partial r}{\partial} (\nu_a \Sigma_a + \nu_{DZ} \Sigma_{DZ}), \qquad T_m^4 = \frac{3}{8} \kappa T_e^4 \frac{\alpha_a \Sigma_a^2 + \alpha_{DZ} \Sigma_{DZ} (\Sigma_{DZ} + 2\Sigma_a)}{\alpha_a \Sigma_a + \alpha_{DZ} \Sigma_{DZ}}$ $T_e = \frac{9}{4\sigma} \Omega^2 (\nu_a \Sigma_a + \nu_{DZ} \Sigma_{DZ})$
- mid-plane temperature T_m depends on the surface density $\Sigma = 2(\Sigma_a + \Sigma_{\rm DZ})$ (contrary to LD with $\alpha_{\rm DZ} = 0$)
- ignition surface density

$$\Sigma_{\rm ign} = 2 \left(\frac{320\sigma}{27} \frac{\mu m_{\rm H}}{k_{\rm B} \Omega \alpha_{\rm DZ}} T_{\rm lim}^{5/2} - \frac{\alpha_a - \alpha_{\rm DZ}}{\alpha_{\rm DZ}} \Sigma_a^2 \right)^{1/2}$$

• surface density necessary to maintain the disc active

$$\Sigma_{\rm mtn} = \left(\frac{1280\sigma\mu m_{\rm H}}{27k_B\alpha_a\Omega}\right)^{1/2} T_{\rm lim}^{5/4}$$

Mini-outbursts - mechanism

Evolution of one outburst

Stationary states

- we search for stationary surface density profiles using 1D code similar to Stepinski (1999) or Armitage et al. (2001)
- numerically solve equation $\dot{\Sigma} = \frac{1}{2\pi r} \frac{\partial \dot{M}}{\partial r}$
- determines T_m from Σ , decides if LD or α D, computes M, advects mass between cells
 - \triangleright stationary solution exist above R_1
 - part of DZ between R₁ and R₂ can be ignited externally
 - it contains mass

$$\begin{array}{l} 2.0 \times 10^{-7} \mathrm{M}_{\odot} \text{ for } \dot{M} = 10^{-8} \ \mathrm{M}_{\odot} \, \mathrm{yr}^{-1} \\ 2.7 \times 10^{-4} \mathrm{M}_{\odot} \text{ for } \dot{M} = 10^{-7} \ \mathrm{M}_{\odot} \, \mathrm{yr}^{-1} \\ 0.01 \mathrm{M}_{\odot} \text{ for } \dot{M} = 10^{-6} \ \mathrm{M}_{\odot} \, \mathrm{yr}^{-1} \end{array}$$

Conclusions

- the dead zone with zero viscosity is a subject of the ring instability
- the instability occurs since the local enhancement of the disc thickness leads to a drop of the viscosity and the accretion rate profile which increases the original disc thickness enhancement

Conclusions

- the dead zone with zero viscosity is a subject of the ring instability
- the instability occurs since the local enhancement of the disc thickness leads to a drop of the viscosity and the accretion rate profile which increases the original disc thickness enhancement
- with $\alpha_{\rm DZ} \neq 0$ the oscillations of the inner edge of DZ occur
 - continuously remove mass from the inner part of DZ
- a stationary accretion ($\dot{M} = \text{const}$) may occur at higher radii; part of this area is combustible can be made active and part of its mass accreted in an outburst type event

Future

- going to 3D (to see what happens with rings and minioutbursts without the assumption of spherical symmetry)
- irradiation by the central star
- more complicated ionization structure (ionization by X-rays,
 - ...)

References

Armitage P. J., Livio M. and Pringle J. E., 2001, MNRAS, 324, 705 Balbus & Hawley, 1991, ApJ, 376, 214 Bell K. R., Lin D. N. C., 1994, ApJ, 477, 987 Fleming & Stone, 2003, ApJ, 585, 908 Fromang S., Terquem C., Balbus S. A., 2002, MNRAS, 329, 18 Gammie, 1996, ApJ, 457, 355 Huré, J.-M., 2002, PASJ, 54, 775 Hubeny, 1990, ApJ, 351, 632 Klahr, H., Henning, T., Kley, W., 1999, ApJ, 514, 325 Papaloizou, J. C. B., Pringle, J. E., 1985, MNRAS, 213, 799 Shakura & Sunayev, 1973, A&A, 24, 337 Stepinski, T., 1999, 30th Annular Lunar and Planetary Conf., Houston, TX, abstract no. 1205 Umebayashi, 1983, Prog. Theor. Phys., 69, 480 Umebayashi & Nakano, 1981, PASJ, 33, 617