Catastrophic cooling in super star cluster winds

(R. Wünsch, G. Tenorio-Tagle, J. Palouš, S. Silich)

Outline:

- 1. Super star cluster winds
- 2. Semi-analytical adiabatic and radiative models
- 3. Catastrophic cooling
- Numerical simulations (1D, 2D, mass outflow)

Super star clusters

- observed in variety of starburst galaxies at all redshifts (Ho, 1997)
- masses: $M_{
 m SC} \sim 10^5 {-}10^7 \ {\rm M}_{\odot}$
- radii: $R_{\rm SC} \sim 3-5~{\rm pc}$ \rightarrow very compact
- age: < 500 Myr
- $L_{\rm mech} \sim 10^{40} 10^{42} \, {\rm erg/s}$
- inonizing UV radiation flux:
 - \triangleright first 3 Myr... $L_{\rm UV} \sim 10^{53}$ photons $\cdot s^{-1}$
 - \triangleright then . . . decrease as t^{-5}
- stellar winds and SN return $\sim 40\% M_{\rm SC}$ back into ISM

M82 - the nearby starburst galaxy Credit: NASA, ESA, The Hubble Heritage Team

SSCs in M82

HST + ACS/WFC F814W image of M82 (Smith et al, 2005)

Some models in literature

Steady state wind

• energy and mass inserted at rates $\dot{E}_{\rm SC}$ and $\dot{M}_{\rm SC}$, respectively; homogeneously into a sphere of radius $R_{\rm SC}$

$$\frac{1}{r^2} \frac{d}{dr} \left(\rho u r^2 \right) = q_m$$
$$\rho u \frac{du}{dr} = -\frac{dP}{dr} - q_m u$$
$$\frac{1}{r^2} \frac{d}{dr} \left[\rho u r^2 \left(\frac{u^2}{2} + \frac{\gamma}{\gamma - 1} \frac{P}{\rho} \right) \right] = q_e - Q$$

for
$$r < R_{\rm SC}$$
:
 $q_m = (3\dot{M}_{\rm SC})/(4\pi R_{\rm SC}^3)$
 $q_e = (3\dot{E}_{\rm SC})/(4\pi R_{\rm SC}^3)$
elsewhere: $q_e = q_m = 0$
 $Q = n^2 \Lambda(T, z)$

• stationary solution exists only if $R_{\rm sonic} = R_{\rm SC}$

outside of cluster: $\frac{du}{dr} = \frac{1}{\rho} \frac{(\gamma-1)rQ+2\gamma uP}{r(u^2-c_s^2)}$ inside of cluster: $\frac{du}{dr} = \frac{1}{\rho} \frac{(\gamma-1)(q_e-Q)+q_m\{[(\gamma+1)/2]u^2-2c_s^2/3\}}{c_s^2-u^2}$

• $Q = 0 \Rightarrow$ analytical formulas for the central quantities

$$\rho_c = \frac{\dot{M}_{\rm SC}}{r\pi B R_{\rm SC}^2 v_{\infty}} \quad , \quad P_c = \frac{\gamma - 1}{2\gamma} \frac{\dot{M}_{\rm SC} v_{\infty}}{r\pi B R_{\rm SC}^2} \quad , \quad T_c = \frac{\gamma - 1}{\gamma} \frac{\mu}{k_B} \frac{q_e}{q_m}$$

 $B = [(\gamma - 1)/(\gamma + 1)]^{1/2} [(\gamma + 1)/(6\gamma + 2)^{(3\gamma + 1)/(5\gamma + 1)}]$

numerical integration of previous ODEs

or
$$r \to \infty$$
:
 $\rho \sim r^{-2}$
 $T \sim r^{-4/3}$
 $u \to v_{\infty} = \sqrt{\frac{2\dot{E}_{\rm SC}}{\dot{M}_{\rm SC}}}$

very extended high temperature (X-ray emitting) region

• no explicit formulas for ρ_c , T_c , but relation:

$$n_c = \sqrt{\frac{q_e - q_m c_{s,c}^2 / (\gamma - 1)}{\Lambda(T_c)}}$$

- iterative search for T_c such that $R_{\text{sonic}} = R_{\text{SC}} \rightarrow \rho_c, P_c \rightarrow$ numerical integration of HD eqs.
- for higher $\dot{E}_{\rm SC}$ temperature drops to $10^4~{\rm K}$ at some radius
- X-ray emitting region is much smaller than in adiabatic case

Catastrophic cooling

- adiabatic case: ρ_c , T_c independent
 - ightarrow always can be stabilised so that $R_{
 m sonic}=R_{
 m SC}$
- radiative case:

$$\begin{split} T_c \to T_{\rm m} &= \frac{\gamma - 1}{\gamma} \frac{\mu}{k_B} \frac{q_e}{q_m} : \rho_c, P_c \to 0 \\ T_c < T_{\rm m} &: P_c \text{ increases for de-} \\ \text{creasing } T_c, \text{ but there is a maximum of } P_c \end{split}$$

• $R_{\text{sonic}} \sim P_c \Rightarrow R_{\text{sonic}}$ cannot be arbitrary large \rightarrow cannot equal to R_{SC} for some parameters \Rightarrow stationary solution does not alway exist

Observed clusters

- most massive observed SSCs have luminosities close to $L_{\rm crit}$ curve
- uncertainty because of unknown v_∞ and metalicity

- M82-A1 associated with HII region:
 - $R_{HII} = 4.5 \text{ pc}$ $n_{HII} = 1800 \text{ cm}^{-3}$ FWHM_{HII} = 62 km/s

Numerical model

- based on ZEUS3D v.3.4.2
- grid-based Eulerian 2nd order hydrodynamic code, van Leer advection
- advantage of radially scaled grid (in 2D regular cells in spherical coords)
- new cooling implemented:
 - > more up-to-date cooling function
 (Plewa, 1995)
 - equation for energy solved by Brendt algorithm (original Newton-Raphson method had problems with convergence and was too slow)
 - time-step controlled by cooling rate

Implementation of cooling

 cooling time-step (limit on the relative amount of internal energy which can be radiated away during 1 time-step)
 (e.g. Suttner et al., 1997)

$$dt_{\rm cool} = {\rm CCN} \times \frac{e}{\rho^2 \Lambda(T,z)}$$

- CCN "Cooling Courant Number" (typically 0.1)
- dt_{cool} too small in some places ($dt_{cool} \sim 10^{-3} dt_{HD}$) \Rightarrow local sub-steps $dt_{sub} \leq dt_{cool}$

$$dt = \begin{cases} dt = dt_{\rm HD} & \text{for } dt_{\rm cool} \ge dt_{\rm HD} \\ dt = dt_{\rm cool} & \text{for } dt_{\rm HD} > dt_{\rm cool} \ge \delta \times dt_{\rm HD} \\ dt = \delta \times dt_{\rm HD} & \text{for } \delta \times dt_{\rm HD} > dt_{\rm cool}; \rightarrow dt_{\rm sub} \le dt_{\rm cool} \end{cases}$$

- δ safety factor (typically 0.1)
- code publically available http://richard.wunsch.matfyz.cz

Supercritical clusters - 1D

- cluster divided into two regions by so called "stagnation radius" $R_{\rm st}$ ($u(R_{\rm st}) = 0$)
- $r > R_{\rm st}$: quasi-stationary wind with $u = c_s$ at $R_{\rm SC}$
- $r < R_{\rm st}$: non-stationary region suffers from the thermal instability

Thermal instability

 drop in temperature leads to the more efficient cooling
 → positive feedback

Supercritical clusters - 1D

Lower $\dot{E}_{\rm SC}$ (10⁴² erg/s)

- inner cluster region oscillates between 2 states with higher (10⁷ K) and lower (10⁴ K) temperature
- periodic shifts of $R_{\rm st}$ and temperature drop region outside the cluster

Higher $\dot{E}_{\rm SC}$ (10⁴³ erg/s) • dense cold standing shells are formed through collisions of shocks

Supercritical clusters - 2D

Mass outflow

• although $R_{\rm st} \to R_{\rm SC}$ for $\dot{E}_{\rm SC} \to \infty$, the amount of mass outflowing from the cluster grows with $\dot{E}_{\rm SC}$

Conclusions

- the radiative cooling may substantially change the radial temperature profile of the SSC wind, making the high-temperature (X-ray emitting) region smaller
- winds in very massive and compact SSCs (above $L_{\rm crit}$ curve) may become thermally unstable in the central region
- the thermally unstable material collapses into dense cold clumps and part of it may eventually feed the subsequent star-formation there
- the outer region of the cluster is still able to produce the quasi-stationary wind, though less powerful than predicted by the adiabatic model

References

Chevalier, R. A., Clegg, A. W., 1985, Nature, 317, 44 Cantó, J., Raga, A. C., Rodríguez, L. F., 2000, ApJ, 536, 869 Ho, L. C., 1997, RMxAA, 6, 5 Plewa, T., 1995, MNRAS, 275, 145 Raga, A. C., Velázquez, P. F., Cantó, J., Masciadri, E., Rodríguez, L. F., 2001, ApJ, 559, L33 Silich, S., Tenorio-Tagle, G., Muñoz-Tuñón, C., 2003, ApJ, 590, 791 Silich, S., Tenorio-Tagle, G., Rodríguez-González, A., 2004, ApJ, 610, 226 Suttner, Smith, M. D., Yorke, H. W., Zinnecker, H., 1997, A&A, 318, 595 Tenorio-Tagle, G., Silich, S., Rodríguez-González, A., Muñoz-Tuñón, C., 2004, ApJ, 620, 217 Tenorio-Tagle, G., Wünsch, R., Silich, S., Palouš, J., 2006, ApJ, submitted Wünsch, R., Tenorio-Tagle, G., Silich, S., Palouš, J., 2007, ApJ, in preparation