2D HD simulations of SSC in a bimodal regime

(R. Wünsch, J. Palouš, G. Tenorio-Tagle, S. Silich)

Super star clusters:

- observed in variety of starburst galaxies at a redshifts (Ho, 1997)
- masses: $M_{
 m SC} \sim 10^5 {-}10^7~{
 m M}_{
 m C}$
- radii: $R_{
 m SC} \sim 3-5$ pc ightarrow very compact
- age: < 500 Myr

 $L_{\rm mech} \sim 10^{40} - 10^{42} {\rm ~erg/s}$ stellar winds and SN return $\sim 40\% M_{\rm SC}$ back into ISM

Richard Wünsch, Young massive star clusters, Granada, 14th September 2007

Physical model of SSC wind

- SW and SN energy thermalized (efficiency η)
- 4 parameters:
 - η , $R_{
 m SC}$, $L_{
 m SC}$ and $\dot{M}_{
 m SC}$
- $L_{\rm SC}$ and $\dot{M}_{\rm SC}$ coupled:

$$v_{a,\infty} = \sqrt{\frac{2L_{\rm SC}}{\dot{M}_{\rm SC}}}$$

if a stellar population assumed

$$R_{SC}$$

$$V_{W} < c_{S}$$

$$L_{SC} \dot{M}_{SC}$$

• Catastrophic cooling: (Silich et al., 2004) energy input rate: $L_{\rm SC} \propto M_{\rm SC}$ cooling rate: $\frac{de}{dt}\Big|_{\rm cool} \propto \rho^2 \propto \dot{M}_{\rm SC}^2 \propto M_{\rm SC}^2$

Critical luminosity

• stationary solution for $L < L_{crit}(R_{SC}, v_{a,\infty}, \eta)$

Quasi-adiabatic and radiative solution

Quasi-adiabatic and radiative solution

Critical luminosity

• bimodal solution for $L > L_{crit}(R_{SC}, v_{a,\infty}, \eta)$

Bimodal solution Tenorio-Tagle et al. (2007)

Numerical simulations

- ZEUS, 2D spherical coords, radially scaled, 1 radian
- new cooling (both global time-step control and substeps)
- $R_{\rm SC} = 10 \text{ pc}$, $L_{\rm SC} = 10^{43} \text{ erg/s} v_{a,\infty} = 1000 \text{ km/s}$, $T_{\rm min} = 10^4 \text{ K}$

Velocity and "line profile"

- Left: magnitude of velocity of 10^4 K gas
- Right: column density (projected radius, radial velocity)
- 2 components of outflowing warm material

Mass flux as function of radius

- semi-anl: includes hot/warm wind only
- numerical: includes both hot/warm wind and clumps
- substantial amount of mass stays inside cluster

 \rightarrow eventually available for SF

Outflow from the cluster for different models

Conclusions

- 2D simulations confirm bimodal behaviour: outer part of cluster produces the quasi-stationary wind, thermal instability forms dense warm clumps in the inner region
- warm 10^4 K outflow from the cluster consits of two components: originally hot wind that cools down and ejected clumps formed in the central region
- ejected clumps carry only small amount of inserted mass (10% or less), most of mass inserted below R_{st} stays in the cluster

Conclusions

- 2D simulations confirm bimodal behaviour: outer part of cluster produces the quasi-stationary wind, thermal instability forms dense warm clumps in the inner region
- warm 10^4 K outflow from the cluster consits of two components: originally hot wind that cools down and ejected clumps formed in the central region
- ejected clumps carry only small amount of inserted mass (10% or less), most of mass inserted below R_{st} stays in the cluster

References

- R. A. Chevalier, A. W. Clegg 1985, Nature, 317, 44
- L. C. Ho 1997, RMxAA, 6, 5
- T. Plewa 1995, MNRAS, 275, 145
- S. Silich, G.Tenorio-Tagle, A.Rodríguez-González 2004, ApJ, 610, 226
- G. Tenorio-Tagle, R. Wünsch, S. Silich, J. Palouš 2007, ApJ, 658, 1196
- R. Wünsch, S. Silich, J. Palouš, G. Tenorio-Tagle 2007, A&A, 471, 579