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1. Protoplanetary disks
(observational evidence, properties, formation)

2. Planet formation
(Core accretion vs. Gravitational instability, dust sedimentation, grain growth, accretion

of gas, eventual migration, dust-gas dynamics - drag force)

3. Layered disk
(basic model, physical processes, properties of layered accretion, numerical model)

4. Ring instability
(2D simulations, mechanism, analytical description, effect of irradiation)

5. Layered disk evolution - minioutbursts
(residual viscosity in DZ, rings vs. minioutbursts, analytical description, mechanism of

mini-outburst, stationary states)

6. Decay of the ring into vortices
(3D simulations of the Rosby wave instability)
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Protoplanetary disks: observational evidence

Optical/NIR:
• Asymmetric profiles of forbidden
emission lines (Edwards et al., 1987)

• Stellar light scattered on dust parti-
cles (Beckwith et al., 1989)

• Dark silhouettes in Orion nebulae and
other HII regions

Millimeter/submillimeter, FIR:
• Broadband emission from the dust
(Beckwith et al., 1990)

• CO rotational transitions suggest Keple-
rian rotational profile
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Protoplanetary disks: observed properties

• Frequency: cca 50% of TTS

• Mass: 0.01 - 0.1 M� (from optically thin mm emision)

• Size: 100 - 1000 AU

• Lifetime: ∼ 107 yr (from ages of TTS)

• Accretion rate: 10−9 - 10−6 M�yr−1

(from optical/UV excess from inner boundary layer)

Chandler (1998) Muzerolle et. al (2000)

Richard Wünsch, Astronomical Institute, CAS, Prague 3/20



Protoplanetary disks: formation and evolution

• Class 0:
. protostar and disk formed by a collapse

of molecular core (104 yr)
. deeply embedded within an infalling en-

velope of dust and gas (visible in FIR only)

• Class I (∼ 105 yr):
. star accretes matter through the disk,

bipolar outflow
. still embedded → strong absorption fea-

tures

• Class II (∼ 107 yr):
. surrounding material largely dissipated,

infall of matter terminated
. protostar & optically thick disk
. planets are supposed to form

• Class III:
. gasseous disk almost dispersed (accretion,

photo-evaporation)
. debris disk: secondary dusty disk formed

by solid body collisions
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Planet formation: GI or CA?

• two competitive hypotheses of giant gas planets formation:
Gravitational instability (Cameron, 1978)
• massive and cold disk, Q ≡ csκ

πGσ < 1.5

• fast ∼ 103 yr

• ruled out in mid-1980s - models sug-
gested MJup,core ∼ 15− 30 M⊕;
today: MJup,core ∼ 6 M⊕

Core accretion (Safronov, 1969)
• collisional accumulation of dust
→ solid core ∼ 10 M⊕

• disk gas accretion, ev. migration

• P (planet) depends on Z

• tpl.form. comparable to disk life-time
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Dust coagulation

• 0.1µm grains → 100 km bodies
(12 orders of magnitude in size)

. complex dust-gas interaction (critical param.
vrel, ρdust)

. collision: sticking, bouncing, restructuring,
erosion, destruction

. Brownian motion, turbulence, sedimentation
into dust layer, drag force (radial drift, trap-
ping), gravitational instability of dust layers,
. . .

Drag force
Dvgas

Dt = −∇P + ρ∇Φ
Dvdust

Dt = ρ∇Φ

}
D(vdust−vgas)

Dt = ∇P

Dust tends to climb up the pressure gradient!
→ radial drift, trapping in rings, spirals, vortices
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Layered-disk: basic idea (Gammie, 1996)

ν = α HscStar

collisional ionization (T > 1000K)

active area: coupled to B

cosmic rays

0.1AU

IAR OAR

ASL

ASL

LAR

X−rays
magnetosphere

ionization by CR and XR

10−100 AU

DZ dead zone
ν=0

• angular momentum transfer - MRI (Balbus & Hawley, 1991)
• parts of the disk are not ionized enough to be well coupled to the magnetic
field

• inner active region (IAR) - collisional ionization

• layered accretion region (LAR) - surface active layers (ASL) ionized by
cosmic rays shield the dead zone (DZ) near the mid-plane

• outer active region (OAR) - low surface density, CR are able to ionize whole
disk
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Layered-disk: physical processes

• MRI occurs for: ReM ≡ VAH
η > 1− 102 (Fromang et al., 2002)

• Alfven velocity related to α-viscosity: VA = α1/2cs

• resistivity η related to the ionization degree x = ne/nH:
η = 6.5× 103x−1cm2s−1

• using H = cs/Ω, magnetic Reynolds number is:

ReM = 7.4× 1013xα1/2
(

R
AU

)3/2 (
T

500K

) (
M

M�

)−1/2

• collisional ionization: x = x(ρ, T ) (Umebayashi, 1983)

x ∼ log(ρ), x(T ) =

 10−16 for T ≤ 800 K
10−13 for T ∼ 900 K
10−11 for T ≥ 1000 K

• CR ionization: stopping depth Σ0 ∼ 100 g/cm2

(Umebayashi & Nakano, 1981)

x =
(

ζ
βnH

)1/2

= 1.6× 10−12
(

T
500K

)1/4
(

ζ
10−17s−1

)1/2 ( nH
1013cm−3

)−1/2
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Properties of the layered accretion

• description of the layered accretion region:

Ṁ = 6πr1/2 ∂
∂r(2Σaνr1/2), ν = αcs,iHa, 9

4ΣaνΩ2 = σT 4
e

T 4
i = 3

8Σaκ(ρi, Ti)T 4
e , c2

s,i = Ha(Ha + HDZ)Ω2

• solution: Ṁ(r), Te(r), Ti(r), . . . → power-laws, exponents
dependent on the opacity κ = κ(ρi, Ti)

• Σa = const ⇒ Ṁ = Ṁ(r) increasing with r

• accumulation of mass in DZ: Σ̇DZ = 1
2πr

∂Ṁ
∂r

• accretion cannot be steady - when ΣDZ

is high enough, DZ mass is accreted in
an outburst like event
⇒ suggested as mechanism for FU Ori-
onis outbursts (Gammie, 1996) r r+dr

M

M(r)
M(r+dr)

DZ
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Numerical model

• based on RHD code TRAMP: (Klahr et al., 1999)

• radiation transfer: flux limited diffusion approximation

• 2D axially symmetric in spherical (r, θ) coords.

• viscosity:
αa = 10−2

(surface layers:

Σa = 100g cm−2

and inner region:

T > 1000K)

αDZ = 0

(elsewhere - dead zone)

• rings formed!
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Ring instability - mechanism

• dead zone decomposes into rings

• ring instability mechanism:
. thickness of surface layer Ha depends on the

dead zone thickness HDZ (due to different ver-
tical gravity)

. Ha is smaller in the ring-like perturbation ⇒ ν
is smaller there, too

. Ṁ depends on derivative of ν ⇒ it is smaller in
inner edge and higher in outer edge of the ring

. enhanced mass accumulation in the ring⇒ posi-
tive feedback

r1/2 r1/2

Ha,2

νν α c H= ν<

Ha,1

s a 1 2

M=6π d
dr

( Σ2 aν )

ν

M

(r)

(r)

HDZ
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• rings may trap the dust → higher
ρdust supports dust coagulation

• rings may decay due to the hy-

drodynamic instability, if q >
√

3
(Ω ∼ r−q)
(Papaloizou & Pringle, 1985)
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Ring instability - anl. description, irradiation

• analytical dispersion rela-
tion based on linearized
equations was found

• qualitative agreement, nu-
merical ring growth rate
is 1-2 orders of magnitude
smaller (radiation transport,
convective flows make vis-
cosity profiles shallower)
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Irradiation
• analytical approximative approach: T 4

i = 3
8τT 4

e + WT 4
?

• vertical structure of the unperturbed disc changes substantially
at higher radii (r > 10 AU) and for the flaring disk only

• ring inst. can be slowed down, but not suppressed completely
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Viscosity in the dead zone - motivation
• indications for a small viscosity in the dead zone
• purely hydrodynamic turbulence excited by waves propagating
from MRI-active surface layers (Fleming & Stone, 2003)

• viscosity in DZ ∼ 10% viscosity in active parts
. 3D shearing-box

non-ideal MHD
simulation

. time evolution
of Maxwell and
Reynolds stress
tensors along a
vertical ray (with a
given r and φ)

. Top: Maxwell stress
tensor traces MHD
turbulence

. Bottom: Reynolds
stress tensor traces
pure hydrodynamic
turbulence
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Results - minioutbursts

• Right: αa = 0.01, αDZ = 0 ⇒ rings

• Bottom left: αa = 10−2, αDZ = 10−3

⇒ mini-outbursts, smooth ṀIB

• Bottom right: αa = 0.02, αDZ =
2 ·10−3 ⇒ very short mini-outbursts,
ṀIB varies 1 order of mag.
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Layered disc with αDZ 6= 0
• analytical description of layered disc with αDZ 6= 0:

Ṁ = 12πr1/2∂r
∂ (νaΣa + νDZΣDZ), T 4

m = 3
8κT 4

e
αaΣ2

a+αDZΣDZ(ΣDZ+2Σa)

αaΣa+αDZΣDZ

T 4
e = 9

4σΩ2(νaΣa + νDZΣDZ)

• mid-plane temperature Tm depends on the surface density
Σ = 2(Σa + ΣDZ) (contrary to LD with αDZ = 0)

• ignition surface density

Σign = 2
(

320σ
27

µmH
kBΩαDZ

T
5/2
lim − αa−αDZ

αDZ
Σ2

a

)1/2

• surface density necessary to maintain the disc active

Σmtn =
(

1280σµmH
27kBαaΩ

)1/2

T
5/4
lim
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Mini-outbursts - mechanism
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Stationary states

• we search for stationary surface density profiles using 1D code
similar to Stepinski (1999) or Armitage et al. (2001)

• numerically solve equation Σ̇ = 1
2πr

∂Ṁ
∂r

• determines Tm from Σ, decides if LD or αD, computes Ṁ,
advects mass between cells

. stationary solution exist above R1

. part of DZ between R1 and R2 can be
ignited externally

. it contains mass

2.0× 10−7M� for Ṁ = 10−8 M� yr−1

2.7× 10−4M� for Ṁ = 10−7 M� yr−1

0.01M� for Ṁ = 10−6 M� yr−1
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Decay of the ring into vortices

• 3D simulation of the ring (64x51x128)

• Rossby wave instabity (shear, similar to Helmholtz-Kelvin)
. analytical descrip-

tion (Papaloizou
& Pringle, 1985;
Lovelace et al.,
1999), 2D sim-
ulations (Hawley,
1987; Finn et
al., 2000)

. does it work in 3D?

. for which param-
eters? (viscosity,
opacity law, resolu-
tion)

. combined HD -
N-body simulations
suggest dust parti-
cle concentration
(Johansen, et
al., 2007)
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Planet formation in vortices - a new idea?

Descartes (1644): Concerning the creation of all of the Planets:
". . . the extremely large space which now contains the vortex of the first

heaven was formerly divided into fourteen or more vortices. . . So that since
those three vortices which had at their centers those bodies that we now call
the Sun, Jupiter, and Saturn were larger than the others; the stars in the
centers of the four smaller vortices surrounding Jupiter descended toward
Jupiter. . .
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