Hydrodynamic equations
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e conservation laws

o can be obtained from statistical physics, but firstly obtained
fenomenologically

o generate chaos — turbulence
 solution may break — discontinuity (shock-wave) appears
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Wave steepening -> Shock wave

Gas Pressure

Fig. A. Self-steepening of a finite-
amplitude sound wave. In the region
where the state variables of the wave
(here, pressure) would become multfi-
valued, irreversible processes dominate

to create a steep, single-valued shock

_ 5 An example of a receding shock wave. From Supersonic Flow and Shock Waves by
Jfront (vertical dashed line). R. Courant and K. O. Friedrichs (New York:Interscience Publishers, Inc., 1948),
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Irreversibility

Passage of a Shock Wave
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Fig. B, Effects of the passage of a sound wave and of a shock wave. As a sound wave
passes through a gas, the pressure and density of the gas oscillates back and forth
along an adiabat (a line of constant entropy], which is a reversible path. In
contrast, the passage of a shock front causes the state of the gas fo jump along an
irreversible path from point 1 to point 2, that is, to a higher pressure, density, and
entropy. The curve connecting these two points is called a Hugoniot, for it was
Hugoniot (and simulfaneously Rankine) who derived, from the conservation laws,
the jump conditions for the state variables across a shock front, After passage of the
shock, the gas relaxes back to point 3 along an adiabat, returning to its original
pressure but to a higher temperature and entropy and a lower density. The shock
has caused an irreversible change in the gas.
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Spherical harmonics
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Spherical Harmunics, Hodal Surface= n = 0,1,2,3

Chris Batty & Richard Wiinsch, Cardiff University, 11th November 2008

4/7



Spherical harmonics vs. beauty
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