
Pressure assisted gravitational
instability of expanding shells

R. Wünsch J. E. Dale J. Palouš
A. P. Whitworth V. Sidorin

Outline:
1. Expanding shell simulations: AMR vs. SPH vs. theory

(Dale et al., 2009, MNRAS, in press; arXiv:0906.1670)

2. New theory: GI of the thick shell embedded in
medium with non-zero pressure

Galactic bubble N107, Credit: Churchwell et al. (2006), Spitzer, GLIMPSE, IRAC, 8µm cont.
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Model setup
• extremely simplified model to
avoid instabilities other than
the gravitational one
(RT, Vishniac)

• ballistic shell (in a free
fall) embedded in a rarefied
medium
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High pressure ambient medium



High pressure ambient medium
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Dependence of fragment growth rate on Pext
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Homogeneous Oblate Rotational Ellipsoid
(Boyd & Whitworth, 2005, A&A, 430, 1059)
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HORE vs. Thin shell
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• z given by hydrostatic equi-
librium

• non-linear eqs. of motion

• homogeneous ellipsoid

• no vertical structure
(inf. thin)

• linearised hydrodyn. eqs.

• sinusoidal perturbations
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Perturbation Growth Rate of the mode l
• wavenumber - size of fragment:

r0 = π
lR, ṙ0 = π

lV

• shell surface density - mass of fragment:
m = πr2Σ

• fragment collapses with const. acceleration r̈
r(t) = r0 + ṙ0t+ 1

2r̈t
2

• shrinks by factor (1− ε) during time tε: r(tε) = (1− ε)r0

• perturbation growth rate:

ωε = 1/tε = − ṙ0

2r0ε
+
(

ṙ2
0

4r2
0ε

2
− r̈

2r0ε

)1/2

(1)

• factor ε unknown; can be determined by comparison with ωthin

• only range of unstable wavenumbers and relative growth rates
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Dispersion relation of the thick shell
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• geometry factor at gravity term

• external pressure term

• dependence on ε - shrink fraction
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Dispersion relation of the thick shell
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Critical external pressure: ωthick ∼ ωthin

• ωthick ∼ ωthin for Pext,crit for
which dz

dΣ = 0
(the shell thickness does not
depend on the surface den-
sity)
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New dispersion relation vs. simulations
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Discussion

• ω only amplifies initial spectrum (given probably mainly by the
turbulence)

• we assume shell confined by thermal pressure from both sides,
but instability can be different if the ram pressure confines the
shell from outside (accreting shell)

• Vishniac and RT instabilities may have an impact

• would be very nice if we have simulations with l0 > l0,thin (very
high Pext), but difficult, because very high resolution is needed

• astrophysical consequences: top-heavy IMF (deficit of low mass
fragments) in low pres environments
observational proposal: we plan to use APEX to determine
fragment mass function of the Carina Flare supershell (450 pc
above the Galactic plane)
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Conclusions

• excellent agreement between AMR and SPH, but disagreement
with the thin shell approximation

• new dispersion relation (fragment growth rate) for the thick
shell embedded in the medium with non-zero pressure

• the new dispersion relation depends on the external pressure,
predicts range of unstable wavenumbers different than the one
given by the thin shell approximation by factor of 0.6 and 2.2
for Pext = 0 and ∞, respectively

• the thick shell dispersion relation is similar to the thin shell
one for the pressure for which the shell thickness locally does
not depend on its surface density (maximum shell thickness)
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