Pressure assisted gravitational a instability of expanding shells

R. Wünsch J. E. Dale J. Palouš A. P. Whitworth V. Sidorin

Outline:

- 1. Expanding shell simulations: AMR vs. SPH vs. theory (Dale et al., 2009, MNRAS, in press; arXiv:0906.1670)
- 2. New theory: GI of the thick shell embedded in medium with non-zero pressure

Galactic bubble N107, Credit: Churchwell et al. (2006), Spitzer, GLIMPSE, IRAC, 8μ m cont.

Richard Wünsch, The Birth and Influence of Massive Stars, Prague, 16th September 2009

Richard Wünsch, The Birth and Influence of Massive Stars, Prague, 16th September 2009

Model setup

- extremely simplified model to avoid instabilities other than the gravitational one (RT, Vishniac)
- ballistic shell (in a free fall) embedded in a rarefied medium

High pressure ambient medium

High pressure ambient medium

Dependence of fragment growth rate on $P_{\rm ext}$

- the shell thickness varies across fragments
- external pres. force is not perpendicular to the shell surface

Homogeneous Oblate Rotational Ellipsoid

(Boyd & Whitworth, 2005, A&A, 430, 1059)

• differentiate with resp. to time:

$$\left\{\frac{2\,m\,\ddot{r}}{5} + \frac{d\mathcal{G}}{dr} + \frac{d\mathcal{B}}{dr}\right\}\,\dot{r} + \left\{\frac{m\,\ddot{z}}{5} + \frac{d\mathcal{G}}{dz} + \frac{d\mathcal{B}}{dz}\right\}\,\dot{z} = 0\,.$$

• \dot{r} and \dot{z} independent:

$$\ddot{r} = -\frac{3Gm}{2r^2} \left[\frac{\cos^{-1}\beta}{(1-\beta^2)^{3/2}} - \frac{\beta}{1-\beta^2} \right] - \frac{20\pi P_{\text{ext}}rz}{3m} + \frac{5c_s^2}{r}$$

Richard Wünsch, The Birth and Influence of Massive Stars, Prague, 16th September 2009

HORE vs. Thin shell

- z given by hydrostatic equilibrium
- non-linear eqs. of motion
- homogeneous ellipsoid

- no vertical structure (inf. thin)
- linearised hydrodyn. eqs.
- sinusoidal perturbations

Perturbation Growth Rate of the mode *l*

• wavenumber - size of fragment:

$$r_0 = \frac{\pi}{l}R, \qquad \dot{r}_0 = \frac{\pi}{l}V$$

shell surface density - mass of fragment:

$$m=\pi r^2\Sigma$$

• fragment collapses with const. acceleration \ddot{r}

$$r(t) = r_0 + \dot{r}_0 t + \frac{1}{2} \ddot{r} t^2$$

- shrinks by factor (1ϵ) during time t_{ϵ} : $r(t_{\epsilon}) = (1 \epsilon)r_0$
- perturbation growth rate:

$$\omega_{\epsilon} = 1/t_{\epsilon} = -\frac{\dot{r}_0}{2r_0\epsilon} + \left(\frac{\dot{r}_0^2}{4r_0^2\epsilon^2} - \frac{\ddot{r}}{2r_0\epsilon}\right)^{1/2}$$
(1)

- factor ϵ unknown; can be determined by comparison with ω_{thin}
- only range of unstable wavenumbers and relative growth rates

Dispersion relation of the thick shell

Conf. to thin shell:

- geometry factor at gravity term
- external pressure term
- dependence on ϵ shrink fraction

Dispersion relation of the thick shell

Critical external pressure: $\omega_{thick} \sim \omega_{thin}$

New dispersion relation vs. simulations

Richard Wünsch, The Birth and Influence of Massive Stars, Prague, 16th September 2009

Discussion

- ω only amplifies initial spectrum (given probably mainly by the turbulence)
- we assume shell confined by thermal pressure from both sides, but instability can be different if the ram pressure confines the shell from outside (accreting shell)
- Vishniac and RT instabilities may have an impact
- would be very nice if we have simulations with $l_0 > l_{0,thin}$ (very high P_{ext}), but difficult, because very high resolution is needed
- astrophysical consequences: top-heavy IMF (deficit of low mass fragments) in low pres environments observational proposal: we plan to use APEX to determine fragment mass function of the Carina Flare supershell (450 pc above the Galactic plane)

Conclusions

- excellent agreement between AMR and SPH, but disagreement with the thin shell approximation
- new dispersion relation (fragment growth rate) for the thick shell embedded in the medium with non-zero pressure
- the new dispersion relation depends on the external pressure, predicts range of unstable wavenumbers different than the one given by the thin shell approximation by factor of 0.6 and 2.2 for $P_{\rm ext} = 0$ and ∞ , respectively
- the thick shell dispersion relation is similar to the thin shell one for the pressure for which the shell thickness locally does not depend on its surface density (maximum shell thickness)