ISM heating efficiency inside clusters from 3D hydrodynamic simulations

R. Wünsch, J. Palouš, G. Tenorio-Tagle, S. Silich, C. Muñoz-Tuñon, A. Whitworth, F. Hueyotl-Zahuantitla

Motivation:

- 1. **Bimodal solution**
 - ▷ secondary SF in the cluster central region
 - \triangleright predicts two-component line profiles, widths ratio ~ 2 (excellent agreement with observations)
- 2. Critical parameter: ratio energy/mass of the reinserted matter must be substantially lower than that of SW/SN
 - only a fraction of mechanical energy is thermalized
 - \rightarrow heating efficiency η
 - mass loading
- 3. How to calculate η from hydro simulations?

- masses: $M_{
 m SC} \sim 10^5 10^7 \ {
 m M}_{\odot}$
- radii: $R_{\rm SC} \sim 1 5$ pc \rightarrow very compact
- ages: up to few Myr
- $L_{
 m mech} \sim 10^{39} 10^{42}$ erg/
- stars return $\sim 30\% M_{
 m SC}$ back into ISM
- UV photon fluxes: $L_{\rm UV} \sim 10^{51} 10^{53} \ {\rm s}^{-1}$, after 3Myr drops as $\sim t^{-5}$
- recombination lines: two components $\sim 100-200$ km/s and $\sim 200-400$ km/s

into ISM $5^{1} - 10^{53} \text{ s}^{-1}$, ps as $\sim t^{-5}$ ponents 0 - 400 km/s

Richard Wünsch, Academy od Sciences, Prague, 15th September 2010

Bimodal solution Tenorio-Tagle et al. (2007)

Web based calculator

http://galaxy.ig.cas.cz/~richard/windcalc

• #		_ D X		
<u>F</u> ile <u>E</u> dit ⊻iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp				
🖕 🔶 🔻 😂 🔕 🏠 💽 http://galaxy.ig.cas.cz/~richard	/windcalc/	☆ 🗊 ▾ 🚺 ▾ Google 🔍		
🛅 Most Visited▼ 💿 Getting Started 🔊 Latest Headlines▼ 🌮 Getting Started 🔊 Latest Headlines▼ 💿 Red Hat, Inc. 📷 Most Visited▼				
🖣 🖲 Searchin 🍥 SSC wind 🍥 SSC 💥 🍥 SSC wind 🌌	Author Q 💿 Scientific 🌌 Supernov 🌌 The Dan	c 🕙 Administr 🏓 7.2. re — 🌌 Author Q 🕨 🕆 🔻		

Super Star Cluster Wind Calculator

Calculates properties of the super star cluster wind taking into account radiative cooling. The calculator solves equations given by <u>Silich et al. (2004)</u> <u>Tenorio-Tagle et al. (2007)</u> and <u>Silich et al. (2008)</u>. The model is based on the following assumptions introduced by <u>Chevalier & Clegg (1985)</u> (CC85). Stars are uniformly distributed in the cluster of the radius $\mathbf{R_{SC}}$, their winds and the mass ejected by supernova explosions collide, the mechanical energy is thermalized and the hot medium inside the cluster is formed. A difference between the high pressure inside the cluster and the zero pressure in infinity drives the SSC wind. Therefore, CC85 model the cluster as a sphere of the radius $\mathbf{R_{SC}}$ into which energy and mass are inserted uniformly at rates $\mathbf{L_{SC}}$ and $\mathbf{dM_{SC}}$, respectively. The fundamental property of the wind solution (and necessary condition for the existence of the stationary solution) is that the wind velocity reaches the sound speed exactly at the cluster border.

The adiabatic terminal velocity of the wind $v_{inf} = (2L_{SC} / dM_{SC})^{1/2}$ is used instead of dM_{SC} as a parameter in this model as it is more convenient. Since it is unknown how much of the mechanical energy is radiated away in the shock-shock collisions and how much is converted into the thermal energy of the ISM inside the cluster, we introduce a parameter **eta** which denotes the latter fraction.

Cluster parameters:

ISC.	1.042	erg/s (input rate of the mechanical energy of winds and SN evplosions)		
LaC:	11642	erg/s (input rate of the mechanical energy of winds and SN explosions)		
RSC:	10	pc (radius of the cluster)		
vinf:	1000	km/s (adiabatic terminal velocity)		
eta:	1	(heating efficiency)		
Rmax:	50	pc (position of the outer boundary)		
Msc:	0 MSun (stellar mass	of the cluster; not implemented yet)		
MBH: 0 MSun (mass of the central BH; not implemented yet)				
dMld: 0 MSun/yr (primordial mass loading; not implemented yet)				
Equation of state parameters:				
metalli	icity: 1.0	(rel. to solar)		
gamma	a: 1.6667	(ratio of specific heats)		
mu_a:	0.609	(average relative mass of the particle)		
mu_i:	1.2727	(average relative mass of the ion)		
Techı	nical parameters:			
💥 Find:	Pal	Previous Next Sext Sex		
Done			1222 Charles	

2D hydro simulations

Wünsch et al. (2008)

- ZEUS, R θ coords, open **both** R-boundaries, periodic θ -boundary
- $R_{SC} = 10$ pc, $L_{SC}/L_{crit} = 20$, $\eta = 1.0$, 600×224

Supersonic recombination lines widths

Tenorio-Tagle et al. (2010)

Critical luminosity and observed clusters

Richard Wünsch, Academy od Sciences, Prague, 15th September 2010

Heating efficiency in clusters in M8 Silich et al. (2009)

- η measured for 10 clusters in M82
- from sizes of HII regions, $\eta \lesssim 10\%$

Model for heating efficiency

Flash model with individual sources

- Flash3.2, standard ppm Rieman solver (the unsplit solver crashes)
- Energy source: \dot{m} , v, T, $R_{
 ho}$, R_T

• for
$$r < R_{
ho}$$
: $v \propto r$, $ho \propto r^{-2}$

• for $r < R_T$: T = const

Cooling:

- time-step controlled by cooling
- limit on the minimum timestep $dt_{\rm min} \sim dt_{\rm hydro}/3$
- substeps

Firsts tests - 2 and 3 stars

500 stars

t = 5.000 kyr

Comparison with uniform mass/energy input

Determination of heating efficiency - temperature

Determination of heating efficiency - pressure

Determination of heating efficiency - density

Resolution study - 100 stars

- meassured average values in spheres: 0.1, 0.2,..., 0.6 pc
- non-thermalized free wind excluded (velocity criterion)
- two media: warm $(T < 3 \times 10^5)$ and hot $(T > 3 \times 10^5 \text{ K})$

Temperature inside the cluster

Pressure inside the cluster

Density inside the cluster

Stellar wind properties from SB99

Leitherer et al. (1999)

- based on Starburst99 v5.1 data tables
- each wind source is a star with $15~{\rm M}_{\odot} < M < 120~{\rm M}_{\odot}$
- time dependent mass loss rate and wind velocity (given by evolutionary tracks)
- mass distribution: Salpeter IMF

<u>Cluster with "realistic" wind sources</u>

$R_{\rm SC} = 0.1~{ m pc},~t=0$

Cluster with "realistic" wind sources 2

$R_{ m SC}=0.01$ pc, t=3 Myr

t = 2.200 kyr

Cluster with "realistic" wind sources 3

$R_{\rm SC}=0.001~{\rm pc,}~t=3~{\rm Myr}$

t = 0.080 kyr

$R_{\rm SC} = 0.001$ pc, time evolution of density

Richard Wünsch, Academy od Sciences, Prague, 15th September 2010

$R_{\rm SC}=0.001$ pc, mass flux

$R_{\rm SC}=0.001$ pc, energy flux

Summary

- massive compact clusters may evolve in the bimodal regime
 - outer quasi-stationary wind region
 - inner thermal instability region, seconday SF
- energy/mass ratio in the hot gas is the critical parameter
 ▶ heating efficiency: observations suggest η ≤ 10%
- 3D models: uniform E&M insertion vs. individual sources
 - in general, the IS model confirms Chevalier & Clegg approximation
 - there are differences freely floating clumps vs. filaments
- messuring the heating efficiency in simulations
 - based on properties (density) of the hot medium inside the cluster
 - \blacktriangleright very difficult to get $\eta < 1$ with "realistic" stellar properties
 - \blacktriangleright other ways making η small: primordial gas, SNe, binaries . . . any ideas?

References

- R. A. Chevalier, A. W. Clegg 1985, Nature, 317, 44
- A. M. Gilbert, J. R. Graham, 2007, ApJ, 668, 168
- T. Plewa 1995, MNRAS, 275, 145
- S. Silich, G.Tenorio-Tagle, A.Rodríguez-González 2004, ApJ, 610, 226
- S. Silich, G.Tenorio-Tagle, C. Muñoz-Tuñón 2007, ApJ, 669, 952
- S. Silich, G.Tenorio-Tagle, A. Torres-Campos, C. Muñoz-Tuñón, A. Monreal-Ibero,
- V. Melo, 2009, ApJ, 700, 931
- G. Tenorio-Tagle, R. Wünsch, S. Silich, J. Palouš 2007, ApJ, 658, 1196
- G. Tenorio-Tagle, R. Wünsch, S. Silich, C. Muñoz-Tuñón, J. Palouš 2010, ApJ, 708, 1621
- R. Wünsch, S. Silich, J. Palouš, G. Tenorio-Tagle 2007, A&A, 471, 579
- R. Wünsch, G. Tenorio-Tagle, J. Palouš, S. Silich, 2008, ApJ, 683, 683