

Thickness matters in self-gravitating expanding shells

R. WünschJ. E. DaleJ. PaloušA. P. WhitworthS. EhlerováV. SidorinR. SmithS. Walch

Outline:

- 1. Observations of shells
 - ightarrow shells are everywhere
- Pressure Assisted Gravitational Instability
 → AMR vs. SPH simulations vs. theory
 → Thickness matters
- 3. Mass spectrum of fragments
 ↔ Oligarchic accretion leads to top-heavy clump mass function

Galactic bubble N107, Credit: Churchwell et al. (2006), Spitzer, GLIMPSE, IRAC, 8μ m cont.

THE INFRARED MILKY WAY: GLIMPSE (3.6-8.0 microns)

The bubbling galactic disk (Churchwell et al., 2006)

Spitzer bands: 4.5μ m (blue), 5.8μ m (green), 8μ m (red)

Bubbles are everywhere

automatic search for HI shells in Leiden-Dwingeloo survey \rightarrow statistical study of 300 HI shells in 2nd quadrant (Ehlerová et al. 2005)

Bubble properties

- radii: $r\sim 10~{\rm pc}$ $2~{\rm kpc}$
- expansion velocities: $v_{\rm exp} \sim 5 30 \ {\rm km/s}$
- formation energy: $E\sim 10^{51}-10^{53}~{\rm erg}$
- observed in many wavelengths: HI (IGALFA, ...), IR (Spitzer/GLIMPSE,...), Hα (WHAM), mm (CO lines), radio cont., X-rays
- observed in MW and many nearby galaxies (LMC, SMC, M31, M33, IC10 . . .)
- origin: OB stars (fossils of expanding HII regions), encounters with HVC or dwarf galaxy, GRB, turbulence and instabilities in ISM
- implications: source of information about ISM, Disk-halo connection, **Triggered star formation (Collect and Collapse)**

Collect and collapse

(Elmegreen & Lada, 1977)

HII region Sh 104 (Deharveng et al., 2003)

Left: contours (thermal radio continuum 1.46 GHz), red (mid-IR emmision - PAHs), turquoise (H α - ionized gas) Right: CO molecular line at different velocities

Multiwavelength study of N107

(Sidorin, 2008)

Expanding shell instabilities

- gravitational instability (long time-scale)
- Rayleigh-Taylor instability
- Vishniac instability (Vishniac, 1983; 1994)
- magnetic field:
 Parker inst. (Parker 1966)
 - Wardle inst. (Wardle, 1990)

 ionized shell instability (Garcia-Segura & Franco, 1996)

Fig. 6.—Evolution of the I-S front instability for a case with constant density (model UC32). The cooling cutoff is 10³ K, and the time step is 5×10^3 yr. The ambient medium has $n_0 = 10^5$ cm⁻³ and $T_0 = 100$ K, and the stellar flux is $F_{a} = 10^{46}$ s⁻¹. This model is equivalent to the very early stages of model S22, shown in Fig. 8.

Simulation setup

- extremely simplified model to avoid instabilities other than the gravitational one (RT, Vishniac)
- ballistic shell (in a free fall) embedded in a rarefied medium

$$\begin{array}{lll} & M_{\rm shell} = 2 \times 10^4 \ {\rm M}_{\odot} \\ & T_{\rm shell} = 10 \ {\rm K} \\ & R_{\rm shell,0} = 10 \ {\rm pc} \\ & V_{\rm shell,0} = 2.2 \ {\rm km \, s^{-1}} \\ & R_{\rm shell,max} = 23 \ {\rm pc} \\ & P_{\rm ext} = 10^{-17}, \ 10^{-13} \\ & {\rm or} \ 5 \times 10^{-13} \ {\rm dyne \, cm^{-2}} \end{array}$$

Initial conditions

Find six differences!

Gravitational instability of thin shell

(Vishniac, 1983; Whitworh et al. 1994; Elmegreen, 1994)

pressure gravity stretching accretion

$$\Sigma_0 R \frac{\partial \Omega}{\partial t} = -c_s^2 \nabla \Sigma_1 + \Sigma_0 \nabla \Phi_1 - \Sigma_0 \Omega V - 3\Sigma_0 \Omega V$$

$$\frac{\partial \Sigma_1}{\partial t} = -\Sigma_0 R \nabla_T \cdot \Omega - 2\Sigma_1 \frac{V}{R}$$
stretching

$$\nabla^2 \Phi_1 = 4\pi G \Sigma_1 \delta(r - R)$$

 \rightarrow linearization, perturbations inserted mode with dimensionless wavenumber l = kR studied:

$$\omega_{\text{thin}}(l) = -\frac{3V}{R} + \sqrt{\frac{V^2}{R^2} + \frac{2\pi G \Sigma_0 l}{R} - \frac{c_s^2 l^2}{R^2}}$$

High pressure ambient medium

High pressure ambient medium

Dispersion relation depends on $P_{\rm ext}$ (and hence on the shell thickness)

Dependence of fragment growth rate on $P_{\rm ext}$

Uniform Oblate Spheroid

(Boyd & Whitworth, 2005)

Kinetic, gravitational and compressional energy:

$$\mathcal{K} = \frac{m}{10} \left(2\dot{r}^2 + \dot{z}^2 \right)$$

$$\mathcal{G} = -\frac{3 G m^2}{5} \frac{\cos^{-1}(z/r)}{\left(r^2 - z^2\right)^{1/2}}$$

$$\frac{d\mathcal{B}}{dV} = P_{\text{ext}} - P_{\text{int}} = P_{\text{ext}} - \frac{m c_s^2}{V}$$

- energy conservation: $\mathcal{E}=\mathcal{K}+\mathcal{G}+\mathcal{B}$
- differentiate with resp. to time:

$$\left\{\frac{2\,m\,\ddot{r}}{5} + \frac{d\mathcal{G}}{dr} + \frac{d\mathcal{B}}{dr}\right\}\,\dot{r} + \left\{\frac{m\,\ddot{z}}{5} + \frac{d\mathcal{G}}{dz} + \frac{d\mathcal{B}}{dz}\right\}\,\dot{z} = 0\,.$$

• \dot{r} and \dot{z} independent:

$$\ddot{r} = -\frac{3Gm}{2r^2} \left[\frac{\cos^{-1}\beta}{(1-\beta^2)^{3/2}} - \frac{\beta}{1-\beta^2} \right] - \frac{20\pi P_{\text{ext}}rz}{3m} + \frac{5c_s^2}{r}$$

UOS vs. thin shell

- z given by hydrostatic equilibrium
- non-linear eqs. of motion
- homogeneous ellipsoid

- no vertical structure (inf. thin shell)
- linearized hydrodyn. eqs.
- sinusoidal perturbations

Dispersion relation of the thick shell

Conf. to thin shell:

- geometry factor at gravity term
- external pressure term
- dependence on ϵ shrink fraction

Pressure assisted gravitational instability

Critical external pressure: $\omega_{\epsilon} \sim \omega_{\text{thin}}$

PAGI vs. simulations

Mass spectrum from Fragmentation Integral

$$\frac{dN}{dm} \sim I_{\rm f}(l,t) \times m^{-2}$$

where $I_{\rm f}(l,t) = \int \omega(l,t') dt'$ is the fragmentation integral

Richard Wünsch, Cardiff Univerzity, 10th November 2010

Mass spectrum of clumps

- clumps identified by algorithm by Smith et al (2009) (similar to CLUMPFIND, but uses grav. potential instead of density)
- initially agrees well with mass spectrum obtain from the fragmentation integral
- later, it becomes more and more top-heavy

Mass spectrum of sink particles

- sink particles created if gravitationally collapsing gas reaches resolution limits
- sink mass function is even more top-heavy
- peaks at $M \sim 80 \ M_{\odot}$ which corresponds to l=25, most unstable wavenumber at the time shell reaches maximum radius

Oligarchic accretion

 "oligarchs" from this period consume most of shell mass

Discussion

- PAGI gives systematically larger range of unstable wavelengths than simulations (?approximation of the UOS evolution by constant acceleration)
- ω only amplifies initial spectrum (given by the turbulence, . . .)
- we assume shell confined by thermal pressure from both sides, but instability can be different if the ram pressure confines the shell from outside (accreting shell)
- Vishniac and RT instabilities may have an impact
- Oligarchic accretion and the resulting top-heavy CMF appear because the gas reservoir to form new cores is depleted (shell does not accrete); Klessen & Burkert (2000) observe similar process in evolution of turbulent protocluster if SFE is high

Carina Flare Supershell observation

- PAGI predicts deficit of low mass fragments in low pres environments (and vice versa)
- Oligarchic accretion predicts top-heavy CMF for non-accreting shells
- we plan to use the APEX telescope (got 36 hours) to determine CMF of the Carina Flare supershell (extends ~ 450 pc above the galactic plane)

Conclusions

- excellent agreement between AMR and SPH, but disagreement with the thin shell approximation
- new instability (PAGI) and dispersion relation (fragment growth rate) for the thick shell embedded in the medium with non-zero pressure
- the PAGI dispersion relation depends on the external pressure, predicts range of unstable wavenumbers different than the one given by the thin shell approximation by factor of 0.6 and 2.2 for $P_{\rm ext} = 0$ and ∞ , respectively
- the PAGI dispersion relation is similar to the thin shell one for the pressure for which the shell thickness locally does not depend on its surface density (maximum shell thickness)
- early stage: mass spectrum of clumps agrees well with analytical estimates (PAGI)
- later stage: oligarchic accreation leads to the top-heavy CMF

References

- Dale, J. E., Wünsch, R., Whitworth, A., Palouš, J., 2009, MNRAS, 398, 1537
- Wünsch, R., Dale, J. E., Palouš, J., Whitworth, A., 2010, MNRAS, 407, 1963
- Dale, J. E., Wünsch, R., Smith, R. J., Whitworth, A., Palouš, J., 2010, MNRAS, in press
- Boyd & Whitworth, 2005, A&A, 430, 1059
- Churchwell, E., etal, 2006, ApJ, 649, 759
- Deharveng, L., Lefloch, B.; Zavagno, A.; Caplan, J.; Whitworth, A. P.; Nadeau, D.; Martín, S.2003, A&A, 408, L25
- Ehlerová, S., Palouš, J., 2005, A&A, 437, 101
- Elmegreen, B. G., Lada, C. J., 1977, ApJ, 214, 725
- Elmegreen, B. E., 1994, ApJ, 427, 384
- Garcia-Segura, G., Franco, J., 1996, ApJ, 496, 171
- Klessen, R., Burkert, A., 2000, ApJS, 128, 287
- Parker, E. N., 1966, ApJ, 145, 811
- Sidorin, V. 2008, Master thesis, Charles University
- Smith, R. J., Clark, P. C., Bonnell, I. A., 2009, MNRAS, 396, 830
- Vishniac, E. T., 1983, ApJ, 274, 152
- Wardle, M. 1990, MNRAS, 246, 98