Formation of Super Star Cluster Winds

R. Wünsch, J. Palouš, G. Tenorio-Tagle, S. Silich, C. Muñoz-Tuñon, A. Whitworth

<u>Outline:</u>

- 1. Observations (nice pictures downloaded from web;)
- 2. Models with uniform mass/energy
- 3. Bimodal regime secondary
- 4. Line profiles from repressuring shocks
- 5. Models with individual sources \rightarrow meassuring heating efficiency

CARDIF

CAERDY

- masses: $M_{
 m SC} \sim 10^5 10^7 \ {
 m M}_{\odot}$
- radii: $R_{
 m SC} \sim 1-5$ pc ightarrow very compact
- ages: up to few Myr
- $L_{
 m mech} \sim 10^{39} 10^{42} \, {
 m erg}/$
- stars return $\sim 30\% M_{
 m SC}$ back into ISM
- UV photon fluxes: $L_{\rm UV} \sim 10^{51} 10^{53} {\rm ~s^{-1}}$, after 3Myr drops as $\sim t^{-5}$
- recombination lines $\sim 30-70$ km/s

- UV photon fluxes: $L_{\rm UV} \sim 10^{51} 10^{53} {\rm s}^{-1}$, after 3Myr drops as $\sim t^{-5}$
- recombination lines $\sim 30-70$ km/s

- recombination lines \sim

Richard Wünsch, AMR-SPH Obergurgl Meeting/Workshop, 27th May 2010

SSCs in our backyard

- R136 in LMC (30 Doradus)
- $M\sim 2-8 imes 10^4~{
 m M}_{\odot}$,
- $R\sim 0.5~{\rm pc},~{\rm age}{\sim}~2~{\rm Myr}$
- bubbles, filaments
 - Tarantula nebula

Credit: N. Walborn (STScI) et al., WFPC2, HST, NASA

- MW: Arches, Quintuplet, NGC3603, Westerlund 1:
- $M \sim 10^5 \ {\rm M}_{\odot}$, $R \sim 0.3 \ {\rm pc}$, age $\sim 3.5-5 \ {\rm Myr}$

Physical model Chevalier & Clegg (1985)

Physical model Silich et al. (2004)

Physical model Tenorio-Tagle et al. (2007)

2D hydro simulations

Wünsch et al. (2008)

- ZEUS, R θ coords, open **both** R-boundaries, periodic θ -boundary
- $R_{SC} = 10$ pc, $L_{SC}/L_{crit} = 20$, $\eta = 1.0$, 600×224

Internal structure of SSC in bimodal regime

- radial profiles averaged over θ and $t=0.4-0.8~{\rm Myr}$
- v = 0 slightly below R_{st} (due to passing clumps)
- P = const for $r < R_{st}$ (in agreement with semi-anl. value)

Outflow from the cluster as a function of time

two component outflow: 1. rarefied originally hot wind
 2. dense clumps

Outflow from the cluster for different models

Supersonic recombination lines widths

Tenorio-Tagle et al. (2010)

Critical luminosity and observed clusters

Heating efficiency in clusters in M8 Silich et al. (2009)

- η measured for 10 clusters in M82
- from sizes of HII regions, $\eta \lesssim 10\%$

Model for heating efficiency

Flash model with individual sources

- Flash3.2, standard ppm Rieman solver (the unsplit solver crashes)
- Energy source: \dot{m} , v, T, $R_{
 ho}$, R_T

• for
$$r < R_{
ho}$$
: $v \propto r$, $ho \propto r^{-2}$

• for $r < R_T$: T = const

Cooling:

- time-step controlled by cooling
- limit on the minimum timestep $dt_{\rm min} \sim dt_{\rm hydro}/3$
- substeps

Firsts tests - 2 and 3 stars

500 stars

t = 5.000 kyr

Comparison with uniform mass/energy input

Determination of heating efficiency

Resolution study - 100 stars

- meassured average values in spheres: 0.1, 0.2,..., 0.6 pc
- non-thermalized free wind excluded (velocity criterion)
- two media: warm $(T < 3 \times 10^5)$ and hot $(T > 3 \times 10^5 \text{ K})$

Temperature inside the cluster

Pressure inside the cluster

Density inside the cluster

Summary

- massive compact clusters evolve in the bimodal regime
 - outer quasi-stationary wind region
 - inner thermal instability region
- model of the bimodal regime:
 - predicts mass accumulated inside the cluster
 - \rightarrow secondary SF, multiple stellar generations
 - explains two-component supersonic line profiles
- 2D models confirm the bimodal behaviour, provide estimates on mass accumulation and line widths
- we try to use 3D models with individual stellar winds to determine the heating efficiency of the ISM inside SSCs

References

- R. A. Chevalier, A. W. Clegg 1985, Nature, 317, 44
- A. M. Gilbert, J. R. Graham, 2007, ApJ, 668, 168
- T. Plewa 1995, MNRAS, 275, 145
- S. Silich, G.Tenorio-Tagle, A.Rodríguez-González 2004, ApJ, 610, 226
- S. Silich, G.Tenorio-Tagle, C. Muñoz-Tuñón 2007, ApJ, 669, 952
- S. Silich, G.Tenorio-Tagle, A. Torres-Campos, C. Muñoz-Tuñón, A. Monreal-Ibero,
- V. Melo, 2009, ApJ, 700, 931
- G. Tenorio-Tagle, R. Wünsch, S. Silich, J. Palouš 2007, ApJ, 658, 1196
- G. Tenorio-Tagle, R. Wünsch, S. Silich, C. Muñoz-Tuñón, J. Palouš 2010, ApJ, 708, 1621
- R. Wünsch, S. Silich, J. Palouš, G. Tenorio-Tagle 2007, A&A, 471, 579
- R. Wünsch, G. Tenorio-Tagle, J. Palouš, S. Silich, 2008, ApJ, 683, 683